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Preface

This volume contains the papers presented at the 18th International Confer-
ence on Algorithmic Learning Theory (ALT 2007), which was held in Sendai
(Japan) during October 1–4, 2007. The main objective of the conference was to
provide an interdisciplinary forum for high-quality talks with a strong theoreti-
cal background and scientific interchange in areas such as query models, on-line
learning, inductive inference, algorithmic forecasting, boosting, support vector
machines, kernel methods, complexity and learning, reinforcement learning, un-
supervised learning and grammatical inference. The conference was co-located
with the Tenth International Conference on Discovery Science (DS 2007).

This volume includes 25 technical contributions that were selected from 50
submissions by the Program Committee. It also contains descriptions of the five
invited talks of ALT and DS; longer versions of the DS papers are available in
the proceedings of DS 2007. These invited talks were presented to the audience
of both conferences in joint sessions.

– Avrim Blum (Carnegie Mellon University, Pittsburgh, USA): “A Theory of
Similarity Functions for Learning and Clustering” (invited speaker for ALT
2007)

– Thomas G. Dietterich (Oregon State University, Corvallis, Oregon, USA):
“Machine Learning in Ecosystem Informatics” (invited speaker for DS 2007)

– Masaru Kitsuregawa (The University of Tokyo, Tokyo, Japan): “Challenge
for Info-plosion” (invited speaker for DS 2007)

– Alex Smola (National ICT Australia /ANU, Canberra, Australia):“A Hilbert
Space Embedding for Distributions” (invited speaker for ALT 2007)

– Jürgen Schmidhuber (IDSIA, Lugano, Switzerland): “Simple Algorithmic
Principles of Discovery, Subjective Beauty, Selective Attention, Curiosity
and Creativity” (joint invited speaker for ALT 2007 and DS 2007)

Since 1999, ALT has been awarding the E. Mark Gold Award for the most
outstanding paper by a student author. This year the award was given to Markus
Maier for his paper “Cluster Identification in Nearest-Neighbor Graphs,” co-
authored by Matthias Hein and Ulrike von Luxburg. We thank Google for spon-
soring the E.M. Gold Award.

ALT 2007 was the 18th in a series of annual conferences established in Japan
in 1990. Another ancestor of ALT 2007 is the conference series Analogical and
Inductive Inference, held in 1986, 1989, and 1992, which merged with the ALT
conference series after a collocation in 1994. ALT subsequently became an inter-
national conference series which has kept its strong links to Japan but has also
regularly been held at overseas destinations including Australia, Germany, Italy,
Singapore, Spain and the USA.

Continuation of the ALT series is supervised by its Steering Committee, con-
sisting of: Thomas Zeugmann (Hokkaido University, Japan) Chair, Steffen Lange
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(FH Darmstadt, Germany) Publicity Chair, Naoki Abe (IBM Thomas J. Wat-
son Research Center, Yorktown, USA), Shai Ben-David (University of Waterloo,
Canada), Marcus Hutter (Australian National University, Canberra, Australia),
Roni Khardon (Tufts University, Medford, USA), Phil Long (Google, Moun-
tain View, USA), Akira Maruoka (Ishinomaki Senshu University, Japan), Rocco
Servedio (Columbia University, New York, USA), Takeshi Shinohara (Kyushu In-
stitute of Technology, Iizuka, Japan), Frank Stephan (National University of Sin-
gapore, Republic of Singapore), Einoshin Suzuki (Kyushu University, Fukuoka,
Japan), and Osamu Watanabe (Tokyo Institute of Technology, Japan).

We would like to thank all of the individuals and institutions who contributed
to the success of the conference: the authors for submitting papers, and the in-
vited speakers for accepting our invitation and lending us their insight into
recent developments in their research areas. We wish to thank the following
sponsors for their generous financial support: the Air Force Office of Scientific
Research (AFOSR); the Asian Office of Aerospace Research and Development
(AOARD)1; Google for sponsoring the E.M.Gold Award; Graduate School of
Information Sciences (GSIS), Tohoku University for providing secretarial assis-
tance and equipment as well; the Research Institute of Electrical Communication
(RIEC), Tohoku University; New Horizons in Computing, MEXT Grant-in-Aid
for Scientific Research on Priority Areas; and the Semi-Structured Data Mining
Project, MEXT Grant-in-Aid for Specially Promoted Research.

We are also grateful for the Technical Group on Computation (COMP) of the
Institute of Electronics, Information and Communication Engineers (IEICE) for
its technical sponsorship; the Division of Computer Science, Hokkaido University
for providing the Web page and online submission system; and the Institute
for Theoretical Computer Science, University of Lübeck where Frank Balbach
developed a part of the online submission system.

We thank the Local Arrangements Chair Akira Ishino (Tohoku University,
Japan) for his great assistance in making the conference a success in many ways.
We thank Vincent Corruble for making the beautiful poster. We thank Springer
for its continuous support in the preparation of this volume.

We would also like to thank all Program Committee members for their hard
work in reviewing the submitted papers and participating in on-line discussions.
We thank the external referees whose reviews made a substantial contribution
to the process of selecting papers for ALT 2007.

We are grateful to the Discovery Science conference for its ongoing collabora-
tion with ALT. In particular we would like to thank the Conference Chair Ayumi
Shinohara (Tohoku University, Japan) and the Program Committee Chairs Vin-
cent Corruble (UPMC, Paris, France) and Masayuki Takeda (Kyushu University,
Japan) for their cooperation and support.

Finally, we would like to express special thanks to Thomas Zeugmann for his
continuous support of the ALT conference series and in particular for his great

1 AFOSR/AOARD support is not intended to express or imply endorsement by the
U.S.Federal Government.



Preface VII

service in maintaining the ALT Web pages and the ALT submission system,
which he programmed together with Frank Balbach and Jan Poland. Thomas
Zeugmann assisted us in many ways by answering countless questions related to
running the conference and preparing the proceedings.

July 2007 Marcus Hutter
Rocco A. Servedio

Eiji Takimoto
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Table of Contents

Editors’ Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Marcus Hutter, Rocco A. Servedio, and Eiji Takimoto

Invited Papers

A Theory of Similarity Functions for Learning and Clustering . . . . . . . . . 9
Avrim Blum

Machine Learning in Ecosystem Informatics . . . . . . . . . . . . . . . . . . . . . . . . . 10
Thomas G. Dietterich

Challenge for Info-plosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Masaru Kitsuregawa

A Hilbert Space Embedding for Distributions . . . . . . . . . . . . . . . . . . . . . . . . 13
Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf

Simple Algorithmic Principles of Discovery, Subjective Beauty, Selective
Attention, Curiosity and Creativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Jürgen Schmidhuber

Invited Papers

Inductive Inference

Feasible Iteration of Feasible Learning Functionals . . . . . . . . . . . . . . . . . . . 34
John Case, Timo Kötzing, and Todd Paddock

Parallelism Increases Iterative Learning Power . . . . . . . . . . . . . . . . . . . . . . . 49
John Case and Samuel E. Moelius III

Prescribed Learning of R.E. Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Sanjay Jain, Frank Stephan, and Nan Ye

Learning in Friedberg Numberings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Sanjay Jain and Frank Stephan

Complexity Aspects of Learning

Separating Models of Learning with Faulty Teachers . . . . . . . . . . . . . . . . . . 94
Vitaly Feldman, Shrenik Shah, and Neal Wadhwa



X Table of Contents

Vapnik-Chervonenkis Dimension of Parallel Arithmetic
Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

César L. Alonso and José Luis Montaña
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Editors’ Introduction

Marcus Hutter, Rocco A. Servedio, and Eiji Takimoto

Philosophers have pondered the phenomenon of learning for millennia; scientists
and psychologists have studied learning for more than a century. But the anal-
ysis of learning as a computational and algorithmic phenomenon is much more
recent, going back only a few decades. Learning theory is now an active research
area that incorporates ideas, problems, and techniques from a wide range of
disciplines including statistics, artificial intelligence, information theory, pattern
recognition, and theoretical computer science. Learning theory has many robust
connections with more applied research in machine learning and has made sig-
nificant contributions to the development of applied systems and to fields such
as electronic commerce and computational biology.

Since learning is a complex and multi-faceted phenomenon, it should come
as no surprise that a wide range of different theoretical models of learning have
been developed and analyzed. This diversity in the field is well reflected in the
topics addressed by the invited speakers to ALT 2007 and DS 2007, and by the
range of different research topics that have been covered by the contributors to
this volume in their papers. The research reported here ranges over areas such
as unsupervised learning, inductive inference, complexity and learning, boosting
and reinforcement learning, query learning models, grammatical inference, online
learning and defensive forecasting, and kernel methods. In this introduction we
give an overview first of the five invited talks of ALT 2007 and DS 2007 and then
of the regular contributions in this volume. We have grouped the papers under
different headings to highlight certain similarities in subject matter or approach,
but many papers span more than one area and other alternative groupings are
certainly possible; the taxonomy we offer is by no means absolute.

Avrim Blum works on learning theory, online algorithms, approximation algo-
rithms, and algorithmic game theory. His interests within learning theory include
similarity functions and clustering, semi-supervised learning and co-training,
online learning algorithms, kernels, preference elicitation and query learning,
noise-tolerant learning, and attribute-efficient learning. In his invited talk for
ALT 2007, Avrim spoke about developing a theory of similarity functions for
learning and clustering problems. Some of the aims of this work are to provide
new insights into what makes kernel functions useful for learning, and to under-
stand what are the minimal conditions on a similarity function that allow it to
be useful for clustering.

Alexander Smola works on nonparametric methods for estimation, in partic-
ular kernel methods and exponential families. He studies estimation techniques
including Support Vector Machines, Gaussian Processes and Conditional Ran-
dom Fields, and uses these techniques on problems in bioinformatics, pattern
recognition, text analysis, computer vision, network security, and optimization
for parallel processing. In his invited lecture for ALT 2007, co-authored with
Arthur Gretton, Le Song, and Bernhard Schölkopf, Alexander spoke about a

M. Hutter, R.A. Servedio, and E. Takimoto (Eds.): ALT 2007, LNAI 4754, pp. 1–8, 2007.
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2 M. Hutter, R.A. Servedio, and E. Takimoto

technique for comparing distributions without the need for density estimation
as an intermediate step. The approach relies on mapping the distributions into
a reproducing kernel Hilbert space, and has a range of applications that were
presented in the talk.

Masaru Kitsuregawa works on data mining, high performance data warehous-
ing, high performance disk and tape arrays, parallel database processing, data
storage and the Web, and related topics. His invited lecture for DS 2007 was
about “Challenges for Info-plosion.”

Thomas G. Dietterich studies topics in machine learning including sequen-
tial and spatial supervised learning, transfer learning, and combining knowledge
and data to learn in knowledge-rich/data-poor application problems. He works
on applying machine learning to a range of problems such as ecosystem infor-
matics, intelligent desktop assistants, and applying AI to computer games. His
invited lecture for DS 2007 discussed the role that machine learning can play in
ecosystem informatics; this is a field that brings together mathematical and com-
putational tools to address fundamental scientific and application problems in
the ecosystem sciences. He described two on-going research efforts in ecosystem
informatics at Oregon State University: (a) the application of machine learn-
ing and computer vision for automated arthropod population counting, and (b)
the application of linear Gaussian dynamic Bayesian networks for automated
cleaning of data from environmental sensor networks.

Jürgen Schmidhuber has worked on a range of topics related to learning, in-
cluding artificial evolution, learning agents, reinforcement learning, metalearn-
ing, universal learning algorithms, Kolmogorov complexity and algorithmic prob-
ability. This work has led to applications in areas such as finance, robotics, and
optimization. In his invited lecture (joint for ALT 2007 and DS 2007), Jürgen
spoke about the algorithmic nature of discovery, perceived beauty, and curiosity.
Jürgen has been thinking about this topic since 1994, when he postulated that
among several patterns classified as “comparable” by some subjective observer,
the subjectively most beautiful is the one with the simplest (shortest) descrip-
tion, given the observer’s particular method for encoding and memorizing it. As
one example of this phenomenon, mathematicians find beauty in a simple proof
with a short description in the formal language they are using.

We now turn our attention to the regular contributions contained in this
volume.

Inductive Inference. Research in inductive inference follows the pioneering work
of Gold, who introduced a recursion-theoretic model of “learning in the limit.”
In the basic inductive inference setting, a learning machine is given a sequence
of (arbitrarily ordered) examples drawn from a (recursive or recursively enu-
merable) language L, which belongs to a known class C of possible languages.
The learning machine maintains a hypothesis which may be updated after each
successive element of the sequence is received; very roughly speaking, the goal
is for the learning machine’s hypothesis to converge to the target language after
finitely many steps. Many variants of this basic scenario have been studied in
inductive inference during the decades since Gold’s original work.
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John Case, Timo Kötzing and Todd Paddock study a setting of learning in
the limit in which the time to produce the final hypothesis is derived from
some ordinal which is updated step by step downwards until it reaches zero,
via some “feasible” functional. Their work first proposes a definition of feasible
iteration of feasible learning functionals, and then studies learning hierarchies
defined in terms of these notions; both collapse results and strict hierarchies
are established under suitable conditions. The paper also gives upper and lower
runtime bounds for learning hierarchies related to these definitions, expressed in
terms of exponential polynomials.

John Case and Samuel Moelius III study iterative learning. This is a variant of
the Gold-style learning model described above in which each of a learner’s output
conjectures may depend only on the learner’s current conjecture and on the
current input element. Case and Moelius analyze two extensions of this iterative
model which incorporate parallelism in different ways. Roughly speaking, one of
their results shows that running several distinct instantiations of a single learner
in parallel can actually increase the power of iterative learners. This provides
an interesting contrast with many standard settings where allowing parallelism
only provides an efficiency improvement. Another result deals with a “collective”
learner which is composed of a collection of communicating individual learners
that run in parallel.

Sanjay Jain, Frank Stephan and Nan Ye study some basic questions about
how hypothesis spaces connect to the class of languages being learned in Gold-
style models. Building on work by Angluin, Lange and Zeugmann, their paper
introduces a comprehensive unified approach to studying learning languages in
the limit relative to different hypothesis spaces. Their work distinguishes between
four different types of learning as they relate to hypothesis spaces, and gives
results for vacillatory and behaviorally correct learning. They further show that
every behaviorally correct learnable class has a prudent learner, i.e., a learner
using a hypothesis space such that it learns every set in the hypothesis space.

Sanjay Jain and Frank Stephan study Gold-style learning of languages in some
special numberings such as Friedberg numberings, in which each set has exactly
one number. They show that while explanatorily learnable classes can all be
learned in some Friedberg numberings, this is not the case for either behaviorally
correct learning or finite learning. They also give results on how other properties
of learners, such as consistency, conservativeness, prudence, iterativeness, and
non U-shaped learning, relate to Friedberg numberings and other numberings.

Complexity aspects of learning. Connections between complexity and learning
have been studied from a range of different angles. Work along these lines has
been done in an effort to understand the computational complexity of various
learning tasks; to measure the complexity of classes of functions using parame-
ters such as the Vapnik-Chervonenkis dimension; to study functions of interest
in learning theory from a complexity-theoretic perspective; and to understand
connections between Kolmogorov-style complexity and learning. All four of these
aspects were explored in research presented at ALT 2007.
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Vitaly Feldman, Shrenek Shah, and Neal Wadhwa analyze two previously
studied variants of Angluin’s exact learning model that make learning more
challenging: learning from equivalence and incomplete membership queries, and
learning with random persistent classification noise in membership queries. They
show that under cryptographic assumptions about the computational complex-
ity of solving various problems the former oracle is strictly stronger than the
latter, by demonstrating a concept class that is polynomial-time learnable from
the former oracle but is not polynomial-time learnable from the latter oracle.
They also resolve an open question of Bshouty and Eiron by showing that the
incomplete membership query oracle is strictly weaker than a standard perfect
membership query oracle under cryptographic assumptions.

César Alonso and José Montaña study the Vapnik-Chervonenkis dimension
of concept classes that are defined in terms of arithmetic operations over real
numbers. Such bounds are of interest in learning theory because of the fun-
damental role the Vapnik-Chervonenkis dimension plays in characterizing the
sample complexity required to learn concept classes. Strengthening previous re-
sults of Goldberg and Jerrum, Alonso and Montaña give upper bounds on the
VC dimension of concept classes in which the membership test for whether an
input belongs to a concept in the class can be performed by an arithmetic circuit
of bounded depth. These new bounds are polynomial both in the depth of the
circuit and in the number of parameters needed to codify the concept.

Vikraman Arvind, Johannes Köbler, and Wolfgang Lindner study the problem
of properly learning k-juntas and variants of k-juntas. Their work is done from
the vantage point of parameterized complexity, which is a natural setting in
which to consider the junta learning problem. Among other results, they show
that the consistency problem for k-juntas is W [2]-complete, that the class of k-
juntas is fixed parameter PAC learnable given access to a W [2] oracle, and that
k-juntas can be fixed parameter improperly learned with equivalence queries
given access to a W [2] oracle. These results give considerable insight on the
junta learning problem.

The goal in transfer learning is to solve new learning problems more effi-
ciently by leveraging information that was gained in solving previous related
learning problems. One challenge in this area is to clearly define the notion of
“relatedness” between tasks in a rigorous yet useful way. M. M. Hassan Mah-
mud analyzes transfer learning from the perspective of Kolmogorov complexity.
Roughly speaking, he shows that if tasks are related in a particular precise sense,
then joint learning is indeed faster than separate learning. This work strengthens
previous work by Bennett, Gács, Li, Vitányi and Zurek.

Online Learning. Online learning proceeds in a sequence of rounds, where in each
round the learning algorithm is presented with an input x and must generate a
prediction y (a bit, a real number, or something else) for the label of x. Then the
learner discovers the true value of the label, and incurs some loss which depends
on the prediction and the true label. The usual overall goal is to keep the total
loss small, often measured relative to the optimal loss over functions from some
fixed class of predictors.
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Jean-Yves Audibert, Rémi Munos and Csaba Szepesvári deal with the sto-
chastic multi-armed bandit setting. They study an Upper Confidence Bound
algorithm that takes into account the empirical variance of the different arms.
They give an upper bound on the expected regret of the algorithm, and also
analyze the concentration of the regret; this risk analysis is of interest since it
is clearly useful to know how likely the algorithm is to have regret much higher
than its expected value. The risk analysis reveals some unexpected tradeoffs
between logarithmic expected regret and concentration of regret.

Jussi Kujala and Tapio Elomaa also consider a multi-armed bandit setting.
They show that the “Follow the Perturbed Leader” technique can be used to
obtain strong regret bounds (which hold against the best choice of a fixed lever
in hindsight) against adaptive adversaries in this setting. This extends previous
results for FPL’s performance against non-adaptive adversaries in this setting.

Vovk’s Aggregating Algorithm is a method of combining hypothesis predictors
from a pool of candidates. Steven Busuttil and Yuri Kalnishkan show how Vovk’s
Aggregating Algorithm (AA) can be applied to online linear regression in a
setting where the target predictor may change with time. Previous work had
only used the Aggregating Algorithm in a static setting; the paper thus sheds
new light on the methods that can be used to effectively perform regression with
a changing target. Busuttil and Kalnishkan also analyze a kernel version of the
algorithm and prove bounds on its square loss.

Unsupervised Learning. Many of the standard problems and frameworks in learn-
ing theory fall under the category of “supervised learning” in that learning is
done from labeled data. In contrast, in unsupervised learning there are no labels
provided for data points; the goal, roughly speaking, is to infer some underlying
structure from the unlabeled data points that are received. Typically this means
clustering the unlabeled data points or learning something about a probability
distribution from which the points were obtained.

Markus Maier, Matthias Hein, and Ulrike von Luxburg study a scenario in
which a learning algorithm receives a sample of points from an unknown distri-
bution which contains a number of distinct clusters. The goal in this setting is
to construct a “neighborhood graph” from the sample, such that the connected
component structure of the graph mirrors the cluster ancestry of the sample
points. They prove bounds on the performance of the k-nearest neighbor al-
gorithm for this problem and also give some supporting experimental results.
Markus received the E. M. Gold Award for this paper, as the program commit-
tee felt that it was the most outstanding contribution to ALT 2007 which was
co-authored by a student.

Kevin Chang considers an unsupervised learning scenario in which a learner
is given access to a sequence of samples drawn from a mixture of uniform distri-
butions over rectangles in d-dimensional Euclidean space. He gives a streaming
algorithm which makes only a small number of passes over such a sequence, uses
a small amount of memory, and constructs a high-accuracy (in terms of statis-
tical distance) hypothesis density function for the mixture. A notable feature of
the algorithm is that it can handle samples from the mixture that are presented
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in any arbitrary order. This result extends earlier work of Chang and Kannan
which dealt with mixtures of uniform distributions over rectangles in one or two
dimensions.

Language Learning. The papers in this group deal with various notions of learn-
ing languages in the limit from positive data. Ryo Yoshinaka’s paper addresses
the question of what precisely is meant by the notion of efficient language learn-
ing in the limit; despite the clear intuitive importance of such a notion, there
is no single accepted definition. The discussion focuses particularly on learning
very simple grammars and minimal simple grammars from positive data, giving
both positive and negative results on efficient learnability under various notions.

François Denis and Amaury Habrard study the problem of learning stochastic
tree languages, based on a sample of trees independently drawn according to an
unknown stochastic language. They extend the notion of rational stochastic lan-
guages over strings to the domain of trees. Their paper introduces a canonical
representation for rational stochastic languages over trees, and uses this rep-
resentation to give an efficient inference algorithm that identifies the class of
rational stochastic tree languages in the limit with probability 1.

Query Learning. In query learning the learning algorithm works by making
queries of various types to an oracle or teacher; this is in contrast with “pas-
sive” statistical models where the learner typically only has access to random
examples and cannot ask questions. The most commonly studied types of queries
are membership queries (requests for the value of the target function at spec-
ified points) and equivalence queries (requests for counterexamples to a given
hypothesis). Other types of queries, such as subset queries (in which the learner
asks whether the current hypothesis is a subset of the target hypothesis, and
if not, receives a negative counterexample) and superset queries, are studied as
well.

Sanjay Jain and Efim Kinber study a query learning framework in which the
queries used are variants of the standard queries described above. In their model
the learner receives the least negative counterexample to subset queries, and is
also given a “correction” in the form of a positive example which is nearest to
the negative example; they also consider similarly modified membership queries.
These variants are motivated in part by considerations of human language learn-
ing, in which corrected versions of incorrect utterances are often provided as part
of the learning process. Their results show that “correcting” positive examples
can sometimes give significant additional power to learners.

Cristina Tı̂rnăucă and Timo Knuutila study query learning under a differ-
ent notion of correction queries, in which the prefix of a string (the query) is
“corrected” by the teacher responding with the lexicographically first suffix that
yields a string in the language. They give polynomial time algorithms for pattern
languages and k-reversible languages using correction queries of this sort. These
results go beyond what is possible for polynomial-time algorithms using mem-
bership queries alone, and thus demonstrate the power of learning from these
types of correction queries.
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Lev Reyzin and Nikhil Srivastava study various problems of learning and ver-
ifying properties of hidden graphs given query access to the graphs. This setting
lends itself naturally to a range of query types that are somewhat different from
those described above; these include edge detection, edge counting, and shortest
path queries. Reyzin and Srivastava give bounds on learning and verifying gen-
eral graphs, degree-bounded graphs, and trees with these types of queries. These
results extend our understanding of what these types of queries can accomplish.

Rika Okada, Satoshi Matsumoto, Tomoyuki Uchida, Yusuke Suzuki and Taka-
yoshi Shoudai study learnability of finite unions of linear graph patterns from
equivalence queries and subset queries. These types of graph patterns are use-
ful for data mining from semi-structured data. The authors show that positive
results can be achieved for learning from equivalence and subset queries (with
counterexamples), and give negative results for learning from restricted subset
queries (in which no counterexamples are given).

Kernel-Based Learning. A kernel function is a mapping which, given two inputs,
implicitly represents each input as a vector in some (possibly high-dimensional or
infinite dimensional) feature space and outputs the inner product between these
two vectors. Kernel methods have received much attention in recent years in part
because it is often possible to compute the value of the kernel function much
more efficiently than would be possible by performing an explicit representation
of the input as a vector in feature space. Kernel functions play a crucial role in
Support Vector Machines and have a rich theory as well as many uses in practical
systems.

Developing new kernel functions, and selecting the most appropriate kernels
for particular learning tasks, is an active area of research. One difficulty in con-
structing kernel functions is in ensuring that they obey the condition of positive
semidefiniteness. Kilho Shin and Tetsuji Kuboyama give a sufficient condition
under which it is ensured that new candidate kernels constructed in a particular
way from known positive semidefinite kernels will themselves be positive semidef-
inite and hence will indeed be legitimate kernel functions. Their work gives new
insights into several kernel functions that have been studied recently such as
principal-angle kernels, determinant kernels, and codon-improved kernels.

Guillaume Stempfel and Liva Ralaivola study how kernels can be used to
learn data separable in the feature space except for the presence of random
classification noise. They describe an algorithm which combines kernel methods,
random projections, and known noise tolerant approaches for learning linear
separators over finite dimensional feature spaces, and give a PAC style analysis
of the algorithm. Given noisy data which is such that the noise-free version would
be linearly separable with a suitable margin in the implicit feature space, their
approach yields an efficient algorithm for learning even if the implicit feature
space has infinitely many dimensions.

Adam Kowalczyk’s paper deals with analyzing hypothesis classes that con-
sist of linear functionals superimposed with “smooth” feature maps; these are
the types of hypotheses generated by many kernel methods. The paper stud-
ies continuity of two important performance metrics, namely the error rate and
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the area under the ROC (receiver operating characteristic curve), for hypothe-
ses of this sort. Using tools from real analysis, specifically transversality theory,
he shows that pointwise convergence of hypotheses implies convergence of these
measures with probability 1 over the selection of the test sample from a suitable
probability density.

Other Directions. Several papers presented at ALT do not fit neatly into the
above categories, but as described below each of these deals with an active and
interesting area of research in learning theory.

Hypothesis boosting is an approach to combining many weak classifiers, or
“rules of thumb,” each of which performs only slightly better than random guess-
ing, to obtain a high-accuracy final hypothesis. Boosting algorithms have been
intensively studied and play an important role in many practical applications. In
his paper, Takafumi Kanamori studies how boosting can be applied to estimate
conditional probabilities of output labels in a multiclass classification setting.
He proposes loss functions for boosting algorithms that generalize the known
margin-based loss function and shows how regularization can be introduced with
an appropriate instantiation of the loss function.

Reinforcement learning is a widely studied approach to sequential decision
problems that has achieved considerable success in practice. Dealing with the
“curse of dimensionality,” which arises from large state spaces in Markov decision
processes, is a major challenge. One approach to dealing with this challenge is
state aggregation, which is based on the idea that similar states can be grouped
together into meta-states. In his paper Ronald Ortner studies pseudometrics for
measuring similarity in state aggregation. He proves an upper bound on the
loss incurred by working with aggregated states rather than original states and
analyzes how online aggregation can be performed when the MDP is not known
to the learner in advance.

In defensive forecasting, the problem studied is that of online prediction of
the binary label associated with each instance in a sequence of instances. In
this line of work no assumption is made that there exists a hidden function
dictating the labels, and in contrast with other work in online learning there is
no comparison class or “best expert” that is compared with. One well-studied
parameter of algorithms in this setting is the calibration error, which roughly
speaking measures the extent to which the forecasts are accurate on average.
In his paper Vladimir V. V’yugin establishes a tradeoff between the calibration
error and the “coarseness” of any prediction strategy by showing that if the
coarseness is small then the calibration error can also not be too small. This
negative result comes close to matching the bounds given in previous work by
Kakade and Foster on a particular forecasting system.

July 2007 Marcus Hutter
Rocco A. Servedio

Eiji Takimoto



A Theory of Similarity Functions for Learning
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Avrim Blum

Department of Computer Science
Carnegie Mellon University
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Abstract. Kernel methods have proven to be powerful tools in machine
learning. They perform well in many applications, and there is also a
well-developed theory of sufficient conditions for a kernel to be useful for
a given learning problem. However, while a kernel can be thought of as
just a pairwise similarity function that satisfies additional mathematical
properties, this theory requires viewing kernels as implicit (and often
difficult to characterize) maps into high-dimensional spaces. In this talk
I will describe work on developing a theory that applies to more general
similarity functions (not just legal kernels) and furthermore describes the
usefulness of a given similarity function in terms of more intuitive, direct
properties, without need to refer to any implicit spaces.

An interesting feature of the proposed framework is that it can also
be applied to learning from purely unlabeled data, i.e., clustering. In
particular, one can ask how much stronger the properties of a similar-
ity function should be (in terms of its relation to the unknown desired
clustering) so that it can be used to cluster well: to learn well without
any label information at all. We find that if we are willing to relax the
objective a bit (for example, allow the algorithm to produce a hierar-
chical clustering that we will call successful if some pruning is close to
the correct answer), then this question leads to a number of interest-
ing graph-theoretic and game-theoretic properties that are sufficient to
cluster well. This work can be viewed as an approach to defining a PAC
model for clustering.

This talk is based on work joint with Maria-Florina Balcan and San-
tosh Vempala.
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The emerging field of Ecosystem Informatics applies methods from computer
science and mathematics to address fundamental and applied problems in the
ecosystem sciences. The ecosystem sciences are in the midst of a revolution
driven by a combination of emerging technologies for improved sensing and the
critical need for better science to help manage global climate change. This paper
describes several initiatives at Oregon State University in ecosystem informatics.

In the area of sensor technologies, there are several projects at Oregon State
University that are developing new ways of sensing the environment. One project
seeks to develop a dense network of battery-free temperature sensors that will
be deployed in a watershed in the H. J. Andrews Experimental Forest, which
is operated by Oregon State. Each sensor combines a digital thermometer, a
radio transmitter, a radio receiver, and a circuit that harvests energy from
spread-spectrum radio frequency signals broadcast from a base station. A sec-
ond project is applying computer vision techniques to automatically identify
and count small arthropods with applications in water quality monitoring and
biodiversity studies. The project has developed robotic devices for manipulating
and photographing specimens as well as computer vision algorithms that learn
to classify specimens to genus and species levels.

Once data is collected by sensors, a second challenge is to clean the data to
remove anomalies due to sensor failures. A third project at Oregon State has de-
veloped dynamic Bayesian network methods to model the normal behavior of an
array of 12 temperature sensors deployed at the Andrews forest. Low-probability
departures from normal are identified as anomalies. The corresponding data val-
ues are marked before being made available on the Andrews web site.

Oregon State has also developed two educational programs to train people to
work in interdisciplinary Ecosystem Informatics research teams. One program
is a 10-week residential summer research program at the Andrews forest. The
other is an interdisciplinary graduate program that brings together students in
mathematics, computer science, and the ecosystem sciences to learn about each
others’ fields and work together on joint projects. Students in this program earn a
Ph.D. in their home field, but they also earn a “minor” in Ecosystem Informatics
by taking a series of courses and writing one chapter in their dissertation relating
to Ecosystem Informatics.
� The full version of this paper is published in the Proceedings of the 10th International

Conference on Discovery Science, Lecture Notes in Artificial Intelligence Vol. 4755.
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The long term goal of this work is to transform ecology from a discipline that
relies on hand-crafted analytical and computational models to a data exploration
science in which models are built and tested more automatically based on massive
data sets collected automatically. We encourage more people to work in this
important new research area.



Challenge for Info-plosion�

Masaru Kitsuregawa

Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

kitsure@tkl.iis.u-tokyo.ac.jp

Abstract. Information created by people has increased rapidly since the
year 2000, and now we are in a time which we could call the “information-
explosion era.” The project “Cyber Infrastructure for the Information-
explosion Era” is a six-year project from 2005 to 2010 supported by
Grant-in-Aid for Scientific Research on Priority Areas from the Min-
istry of Education, Culture, Sports, Science and Technology (MEXT)
of Japan. The project aims to establish the following fundamental tech-
nologies in this information-explosion era: novel technologies for efficient
and trustable information retrieval from explosively growing and hetero-
geneous information resources; stable, secure, and scalable information
systems for managing rapid information growth; and information uti-
lization by harmonized human-system interaction. It also aims to design
a social system that cooperates with these technologies. Moreover, it
maintains the synergy of cutting-edge technologies in informatics.

� The full version of this paper is published in the Proceedings of the 10th International
Conference on Discovery Science, Lecture Notes in Artificial Intelligence Vol. 4755.
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A Hilbert Space Embedding for Distributions

Alex Smola1, Arthur Gretton2, Le Song1, and Bernhard Schölkopf2
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Abstract. We describe a technique for comparing distributions without
the need for density estimation as an intermediate step. Our approach re-
lies on mapping the distributions into a reproducing kernel Hilbert space.
Applications of this technique can be found in two-sample tests, which
are used for determining whether two sets of observations arise from the
same distribution, covariate shift correction, local learning, measures of
independence, and density estimation.

Kernel methods are widely used in supervised learning [1, 2, 3, 4], however
they are much less established in the areas of testing, estimation, and analysis
of probability distributions, where information theoretic approaches [5, 6] have
long been dominant. Recent examples include [7] in the context of construction
of graphical models, [8] in the context of feature extraction, and [9] in the context
of independent component analysis. These methods have by and large a com-
mon issue: to compute quantities such as the mutual information, entropy, or
Kullback-Leibler divergence, we require sophisticated space partitioning and/or
bias correction strategies [10, 9].

In this paper we give an overview of methods which are able to compute
distances between distributions without the need for intermediate density esti-
mation. Moreover, these techniques allow algorithm designers to specify which
properties of a distribution are most relevant to their problems. We are opti-
mistic that our embedding approach to distribution representation and analysis
will lead to the development of algorithms which are simpler and more effective
than entropy-based methods in a broad range of applications.

We begin our presentation in Section 1 with an overview of reproducing kernel
Hilbert spaces (RKHSs), and a description of how probability distributions can
be represented as elements in an RKHS. In Section 2, we show how these repre-
sentations may be used to address a variety of problems, including homogeneity
testing (Section 2.1), covariate shift correction (Section 2.2), independence mea-
surement (Section 2.3), feature extraction (Section 2.4), and density estimation
(Section 2.5).
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1 Hilbert Space Embedding

1.1 Preliminaries

In the following we denote by X the domain of observations, and let Px be a
probability measure on X. Whenever needed, Y will denote a second domain,
with its own probability measure Py . A joint probability measure on X × Y will
be denoted by Px,y. We will assume all measures are Borel measures, and the
domains are compact.

We next introduce a reproducing kernel Hilbert space (RKHS) H of functions
on X with kernel k (the analogous definitions hold for a corresponding RKHS G

with kernel l on Y). This is defined as follows: H is a Hilbert space of functions
X → R with dot product 〈·, ·〉, satisfying the reproducing property:

〈f(·), k(x, ·)〉 = f(x) (1a)
and consequently 〈k(x, ·), k(x′, ·)〉 = k(x, x′). (1b)

This means we can view the linear map from a function f on X to its value at x
as an inner product. The evaluation functional is then given by k(x, ·), i.e. the
kernel function. Popular kernel functions on R

n include the polynomial kernel
k(x, x′) = 〈x, x′〉d, the Gaussian RBF kernel k(x, x′) = exp

(
−λ ‖x − x′‖2

)
, and

the Laplace kernel k(x, x′) = exp (−λ ‖x − x′‖). Good kernel functions have been
defined on texts, graphs, time series, dynamical systems, images, and structured
objects. For recent reviews see [11, 12, 13].

An alternative view, which will come in handy when designing algorithms
is that of a feature map. That is, we will consider maps x → φ(x) such that
k(x, x′) = 〈φ(x), φ(x′)〉 and likewise f(x) = 〈w, φ(x)〉, where w is a suitably
chosen “weight vector” (w can have infinite dimension, e.g. in the case of a
Gaussian kernel).

Many kernels are universal in the sense of [14]. That is, their Hilbert spaces H

are dense in the space of continuous bounded functions C0(X) on the compact
domain X. For instance, the Gaussian and Laplacian RBF kernels share this
property. This is important since many results regarding distributions are stated
with respect to C0(X) and we would like to translate them into results on Hilbert
spaces.

1.2 Embedding

At the heart of our approach are the following two mappings:

μ[Px] := Ex [k(x, ·)] (2a)

μ[X ] :=
1
m

m∑
i=1

k(xi, ·). (2b)

Here X = {x1, . . . , xm} is assumed to be drawn independently and identically
distributed from Px. If the (sufficient) condition Ex [k(x, x)] < ∞ is satisfied,
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then μ[Px] is an element of the Hilbert space (as is, in any case, μ[X ]). By virtue
of the reproducing property of H,

〈μ[Px], f〉 = Ex [f(x)] and 〈μ[X ], f〉 =
1
m

m∑
i=1

f(xi).

That is, we can compute expectations and empirical means with respect to Px

and X , respectively, by taking inner products with the means in the RKHS, μ[Px]
and μ[X ]. The representations μ[Px] and μ[X ] are attractive for the following
reasons [15, 16]:

Theorem 1. If the kernel k is universal, then the mean map μ : Px → μ[Px]
is injective.

Moreover, we have fast convergence of μ[X ] to μ[Px] as shown in [17, Theorem
15]. Denote by Rm(H,Px) the Rademacher average [18] associated with Px and
H via

Rm(H,Px) =
1
m

Ex1,...,xmEσ1,...,σm

[
sup

‖f‖H≤1

∣∣∣∣∣
m∑

i=1

σif(xi)

∣∣∣∣∣

]
. (3)

Rm(H,Px) can be used to measure the deviation between empirical means and
expectations [17].

Theorem 2. Assume that ‖f‖∞ ≤ R for all f ∈ H with ‖f‖H ≤ 1. Then with
probability at least 1 − δ, ‖μ[Px] − μ[X ]‖ ≤ 2Rm(H,Px) + R

√
−m−1 log(δ)

This ensures that μ[X ] is a good proxy for μ[Px], provided the Rademacher
average is well behaved.

Theorem 1 tells us that μ[Px] can be used to define distances between distri-
butions Px and Py, simply by letting D(Px,Py) := ‖μ[Px] − μ[Py ]‖. Theorem 2
tells us that we do not need to have access to actual distributions in order to
compute D(Px,Py) approximately — as long as Rm(H,Px) = O(m− 1

2 ), a finite
sample from the distributions will yield error of O(m− 1

2 ). See [18] for an analysis
of the behavior of Rm(H,Px) when H is an RKHS.

This allows us to use D(Px,Py) as a drop-in replacement wherever informa-
tion theoretic quantities would have been used instead, e.g. for the purpose of
determining whether two sets of observations have been drawn from the same
distribution. Note that there is a strong connection between Theorem 2 and uni-
form convergence results commonly used in Statistical Learning Theory [19, 16].
This is captured in the theorem below:

Theorem 3. Let F be the unit ball in the reproducing kernel Hilbert space H.
Then the deviation between empirical means and expectations for any f ∈ F is
bounded:

sup
f∈F

∣∣∣∣∣Ex [f(x)] − 1
m

m∑
i=1

f(xi)

∣∣∣∣∣ = ‖μ[Px] − μ[X ]‖ .
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Bounding the probability that this deviation exceeds some threshold ε is one of
the key problems of statistical learning theory. See [16] for details. This means
that we have at our disposition a large range of tools typically used to assess
the quality of estimators. The key difference is that while those bounds are
typically used to bound the deviation between empirical and expected means
under the assumption that the data are drawn from the same distribution, we
will use the bounds in Section 2.1 to test whether this assumption is actually true,
and in Sections 2.2 and 2.5 to motivate strategies for approximating particular
distributions.

This is analogous to what is commonly done in the univariate case: the
Glivenko-Cantelli lemma allows one to bound deviations between empirical and
expected means for functions of bounded variation, as generalized by the work
of Vapnik and Chervonenkis [20, 21]. However, the Glivenko-Cantelli lemma also
leads to the Kolmogorov-Smirnov statistic comparing distributions by compar-
ing their cumulative distribution functions. Moreover, corresponding q-q plots
can be used as a diagnostic tool to identify where differences occur.

1.3 A View from the Marginal Polytope

The space of all probability distributions P is a convex set. Hence, the image
M := μ[P] of P under the linear map μ also needs to be convex. This set is
commonly referred to as the marginal polytope. Such mappings have become
a standard tool in deriving efficient algorithms for approximate inference in
graphical models and exponential families [22, 23].

We are interested in the properties of μ[P] in the case where P satisfies the
conditional independence relations specified by an undirected graphical model.
In [24], it is shown for this case that the sufficient statistics decompose along the
maximal cliques of the conditional independence graph.

More formally, denote by C set of maximal cliques of the graph G and let xc

be the restriction of x ∈ X to the variables on clique c ∈ C. Moreover, let kc

be universal kernels in the sense of [14] acting on the restrictions of X on clique
c ∈ C. In this case [24] show that

k(x, x′) =
∑
c∈C

kc(xc, x
′
c) (4)

can be used to describe all probability distributions with the above mentioned
conditional independence relations using an exponential family model with k as
its kernel. Since for exponential families expectations of the sufficient statistics
yield injections, we have the following result:

Corollary 1. On the class of probability distributions satisfying conditional in-
dependence properties according to a graph G with maximal clique set C and with
full support on their domain, the operator

μ[P] =
∑
c∈C

μc[Pc] =
∑
c∈C

Exc [kc(xc, ·)] (5)
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is injective if the kernels kc are all universal. The same decomposition holds for
the empirical counterpart μ[X ].

The condition of full support arises from the conditions of the Hammersley-
Clifford Theorem [25, 26]: without it, not all conditionally independent random
variables can be represented as the product of potential functions. Corollary 1
implies that we will be able to perform all subsequent operations on structured
domains simply by dealing with mean operators on the corresponding maximal
cliques.

1.4 Choosing the Hilbert Space

Identifying probability distributions with elements of Hilbert spaces is not new:
see e.g. [27]. However, this leaves the obvious question of which Hilbert space to
employ. We could informally choose a space with a kernel equalling the Delta
distribution k(x, x′) = δ(x, x′), in which case the operator μ would simply be
the identity map (which restricts us to probability distributions with square
integrable densities).

The latter is in fact what is commonly done on finite domains (hence the L2

integrability condition is trivially satisfied). For instance, [22] effectively use the
Kronecker Delta δ(xc, x

′
c) as their feature map. The use of kernels has additional

advantages: we need not deal with the issue of representation of the sufficient
statistics or whether such a representation is minimal (i.e. whether the sufficient
statistics actually span the space).

Whenever we have knowledge about the class of functions F we would like to
analyze, we should be able to trade off simplicity in F with better approximation
behavior in P. For instance, assume that F contains only linear functions. In this
case, μ only needs to map P into the space of all expectations of x. Consequently,
one may expect very good constants in the convergence of μ[X ] to μ[Px].

2 Applications

While the previous description may be of interest on its own, it is in application to
areas of statistical estimation and artificial intelligence that its relevance becomes
apparent.

2.1 Two-Sample Test

Since we know that μ[X ] → μ[Px] with a fast rate (given appropriate behavior
of Rm(H,Px)), we may compare data drawn from two distributions Px and
Py, with associated samples X and Y , to test whether both distributions are
identical; that is, whether Px = Py. For this purpose, recall that we defined
D(Px,Py) = ‖μ[Px] − μ[Py]‖. Using the reproducing property of an RKHS we
may show [16] that

D2(Px,Py) = Ex,x′ [k(x, x′)] − 2Ex,y [k(x, y)] + Ey,y′ [k(y, y′)] ,
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where x′ is an independent copy of x, and y′ an independent copy of y. An
unbiased empirical estimator of D2(Px,Py) is a U-statistic [28],

D̂2(X, Y ) := 1
m(m−1)

∑
i�=j

h((xi, yi), (xj , yj)), (6)

where

h((x, y), (x′, y′)) := k(x, x′) − k(x, y′) − k(y, x′) + k(y, y′).

An equivalent interpretation, also in [16], is that we find a function that max-
imizes the difference in expectations between probability distributions. The re-
sulting problem may be written

D(Px,Py) := sup
f∈F

|Ex[f(x)] − Ey[f(y)]| . (7)

To illustrate this latter setting, we plot the witness function f in Figure 1,
when Px is Gaussian and Py is Laplace, for a Gaussian RKHS kernel. This
function is straightforward to obtain, since the solution to Eq. (7) can be written
f(x) = 〈μ[Px] − μ[Py], φ(x)〉.

The following two theorems give uniform convergence and asymptotic results,
respectively. The first theorem is a straightforward application of [29, p. 25].

Theorem 4. Assume that the kernel k is nonnegative and bounded by 1. Then
with probability at least 1 − δ the deviation |D2(Px,Py) − D̂2(X, Y )| is bounded
by 4

√
log(2/δ)/m.
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Fig. 1. Illustration of the function maximizing the mean discrepancy in the case where
a Gaussian is being compared with a Laplace distribution. Both distributions have zero
mean and unit variance. The function f that witnesses the difference in feature means
has been scaled for plotting purposes, and was computed empirically on the basis of
2 × 104 samples, using a Gaussian kernel with σ = 0.5.
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Note that an alternative uniform convergence bound is provided in [30], based
on McDiarmid’s inequality [31]. The second theorem appeared as [30, Theorem
8], and describes the asymptotic distribution of D̂2(X, Y ). When Px 	= Py, this
distribution is given by [28, Section 5.5.1]; when Px = Py, it follows from [28,
Section 5.5.2] and [32, Appendix].

Theorem 5. We assume E
(
h2

)
< ∞. When Px 	= Py, D̂2(X, Y ) converges in

distribution [33, Section 7.2] to a Gaussian according to

m
1
2

(
D̂2(X, Y ) − D2(Px,Py)

)
D→ N

(
0, σ2

u

)
,

where σ2
u = 4

(
Ez

[
(Ez′h(z, z′))2

]
− [Ez,z′(h(z, z′))]2

)
and z := (x, y), uniformly

at rate 1/
√

m [28, Theorem B, p. 193]. When Px = Py, the U-statistic is degen-
erate, meaning Ez′h(z, z′) = 0. In this case, D̂2(X, Y ) converges in distribution
according to

mD̂2(X, Y ) D→
∞∑

l=1

λl

[
g2

l − 2
]
, (8)

where gl ∼ N(0, 2) i.i.d., λi are the solutions to the eigenvalue equation
∫

X

k̃(x, x′)ψi(x)dp(x) = λiψi(x′),

and k̃(xi, xj) := k(xi, xj)−Exk(xi, x)−Exk(x, xj)+Ex,x′k(x, x′) is the centered
RKHS kernel.

We illustrate the MMD density by approximating it empirically for both Px =
Py (also called the null hypothesis, or H0) and Px 	= Py (the alternative hypoth-
esis, or H1). Results are plotted in Figure 2. We may use this theorem directly to
test whether two distributions are identical, given an appropriate finite sample
approximation to the (1−α)th quantile of (8). In [16], this was achieved via two
strategies: by using the bootstrap [34], and by fitting Pearson curves using the
first four moments [35, Section 18.8].

While uniform convergence bounds have the theoretical appeal of making no
assumptions on the distributions, they produce very weak tests. We find the test
arising from Theorem 5 performs considerably better in practice. In addition, [36]
demonstrate that this test performs very well in circumstances of high dimension
and low sample size (i.e. when comparing microarray data), as well as being the
only test currently applicable for structured data such as distributions on graphs.
Moreover, the test can be used to determine whether records in databases may
be matched based on their statistical properties. Finally, one may also apply
it to extract features with the aim of maximizing discrepancy between sets of
observations (see Section 2.4).

2.2 Covariate Shift Correction and Local Learning

A second application of the mean operator arises in situations of supervised
learning where the training and test sets are drawn from different distributions,
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Fig. 2. Left: Empirical distribution of the MMD under H0, with Px and Py both
Gaussians with unit standard deviation, using 50 samples from each. Right: Empir-
ical distribution of the MMD under H1, with Px a Laplace distribution with unit
standard deviation, and Py a Laplace distribution with standard deviation 3

√
2, using

100 samples from each. In both cases, the histograms were obtained by computing 2000
independent instances of the MMD.

i.e. X = {x1, . . . , xm} is drawn from Px and X ′ = {x′
1, . . . , x

′
m′} is drawn from

Px′ . We assume, however, that the labels y are drawn from the same conditional
distribution Py|x on both the training and test sets.

The goal in this case is to find a weighting of the training set such that
minimizing a reweighted empirical error on the training set will come close to
minimizing the expected loss on the test set. That is, we would like to find
weights {β1, . . . , βm} for X with

∑
i βi = 1.

Obviously, if Py|x is a rapidly changing function of x, or if the loss measuring
the discrepancy between y and its estimate is highly non-smooth, this problem
is difficult to solve. However, under regularity conditions spelled out in [37], one
may show that by minimizing

Δ :=

∥∥∥∥∥
m∑

i=1

βik(xi, ·) − μ[X ′]

∥∥∥∥∥
subject to βi ≥ 0 and

∑
i βi = 1, we will obtain weights which achieve this

task. The idea here is that the expected loss with the expectation taken over
y|x should not change too quickly as a function of x. In this case we can use
points xi “nearby” to estimate the loss at location x′

j on the test set. Hence we
are re-weighting the empirical distribution on the training set X such that the
distribution behaves more like the empirical distribution on X ′.

Note that by re-weighting X we will assign some observations a higher weight
than 1

m . This means that the statistical guarantees can no longer be stated in
terms of the sample size m. One may show [37], however, that ‖β‖−2

2 now behaves
like the effective sample size. Instead of minimizing Δ, it pays to minimize Δ2 +
λ ‖β‖2

2 subject to the above constraints. It is easy to show using the reproducing
property of H that this corresponds to the following quadratic program:
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minimize
β

1
2
β	 (K + λ1)β − β	l (9a)

subject to βi ≥ 0 and
∑

i

βi = 1. (9b)

Here Kij := k(xi, xj) denotes the kernel matrix and li := 1
m

∑m′

j=1 k(xi, x
′
j) is

the expected value of k(xi, ·) on the test set X ′, i.e. li = 〈k(xi, ·), μ[X ′]〉.
Experiments show that solving (9) leads to sample weights which perform

very well in covariate shift. Remarkably, the approach can even outperform
“importance sampler” weights, i.e. weights βi obtained by computing the ra-
tio βi = Px′(xi)/Px(xi). This is surprising, since the latter provide unbiased
estimates of the expected error on X ′. A point to bear in mind is that the
kernels employed in the classification/regression learning algorithms of [37] are
somewhat large, suggesting that the feature mean matching procedure is helpful
when the learning algorithm returns relatively smooth classification/regression
functions (we observe the same situation in the example of [38, Figure 1], where
the model is “simpler” than the true function generating the data).

In the case where X ′ contains only a single observation, i.e. X ′ = {x′}, the
above procedure leads to estimates which try to find a subset of observations
in X and a weighting scheme such that the error at x′ is approximated well.
In practice, this leads to a local sample weighting scheme, and consequently an
algorithm for local learning [39]. Our key advantage, however, is that we do not
need to define the shape of the neighborhood in which we approximate the error
at x′. Instead, this is automatically taken care of via the choice of the Hilbert
space H and the location of x′ relative to X .

2.3 Independence Measures

A third application of our mean mapping arises in measures of whether two ran-
dom variables x and y are independent. Assume that pairs of random variables
(xi, yi) are jointly drawn from some distribution Px,y. We wish to determine
whether this distribution factorizes.

Having a measure of (in)dependence between random variables is a very use-
ful tool in data analysis. One application is in independent component analysis
[40], where the goal is to find a linear mapping of the observations xi to obtain
mutually independent outputs. One of the first algorithms to gain popularity
was InfoMax, which relies on information theoretic quantities [41]. Recent devel-
opments using cross-covariance or correlation operators between Hilbert space
representations have since improved on these results significantly [42, 43, 44]; in
particular, a faster and more accurate quasi-Newton optimization procedure for
kernel ICA is given in [45]. In the following we re-derive one of the above kernel
independence measures using mean operators instead.

We begin by defining

μ[Pxy] := Ex,y [v((x, y), ·)]
and μ[Px × Py] := ExEy [v((x, y), ·)] .
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Here we assumed that V is an RKHS over the space X × Y with kernel
v((x, y), (x′, y′)). If x and y are dependent, the equality μ[Pxy] = μ[Px × Py]
will not hold. Hence we may use Δ := ‖μ[Pxy] − μ[Px × Py]‖ as a measure of
dependence.

Now assume that v((x, y), (x′, y′)) = k(x, x′)l(y, y′), i.e. that the RKHS V is
a direct product H ⊗ G of the RKHSs on X and Y. In this case it is easy to see
that

Δ2 = ‖Exy [k(x, ·)l(y, ·)] − Ex [k(x, ·)] Ey [l(y, ·)]‖2

= ExyEx′y′ [k(x, x′)l(y, y′)] − 2ExEyEx′y′ [k(x, x′)l(y, y′)]
+ExEyEx′Ey′ [k(x, x′)l(y, y′)]

The latter, however, is exactly what [43] show to be the Hilbert-Schmidt norm
of the covariance operator between RKHSs: this is zero if and only if x and y
are independent, for universal kernels. We have the following theorem:

Theorem 6. Denote by Cxy the covariance operator between random variables
x and y, drawn jointly from Pxy, where the functions on X and Y are the re-
producing kernel Hilbert spaces F and G respectively. Then the Hilbert-Schmidt
norm ‖Cxy‖HS equals Δ.

Empirical estimates of this quantity are as follows:

Theorem 7. Denote by K and L the kernel matrices on X and Y respectively.
Moreover, denote by H = I − 1/m the projection matrix onto the subspace
orthogonal to the vector with all entries set to 1. Then m−2 trHKHL is an
estimate of Δ2 with bias O(m−1). With high probability the deviation from Δ2

is O(m− 1
2 ).

See [43] for explicit constants. In certain circumstances, including in the case
of RKHSs with Gaussian kernels, the empirical Δ2 may also be interpreted in
terms of a smoothed difference between the joint empirical characteristic func-
tion (ECF) and the product of the marginal ECFs [46, 47]. This interpretation
does not hold in all cases, however, e.g. for kernels on strings, graphs, and other
structured spaces. An illustration of the witness function of the equivalent op-
timization problem in Eq. 7 is provided in Figure 3. We observe that this is
a smooth function which has large magnitude where the joint density is most
different from the product of the marginals.

Note that if v((x, y), ·) does not factorize we obtain a more general measure
of dependence. In particular, we might not care about all types of interaction
between x and y to an equal extent, and use an ANOVA kernel. Computationally
efficient recursions are due to [48], as reported in [49]. More importantly, this
representation will allow us to deal with structured random variables which are
not drawn independently and identically distributed, such as time series.

For instance, in the case of EEG (electroencephalogram) data, we have both
spatial and temporal structure in the signal. That said, few algorithms take full
advantage of this when performing independent component analysis [50]. The
pyramidal kernel of [51] is one possible choice for dependent random variables.
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Fig. 3. Illustration of the function maximizing the mean discrepancy when MMD is
used as a measure of independence. A sample from dependent random variables x and
y is shown in black, and the associated function f that witnesses the MMD is plotted
as a contour. The latter was computed empirically on the basis of 200 samples, using
a Gaussian kernel with σ = 0.2.

2.4 Feature Extraction

Kernel measures of statistical dependence need not be applied only to the analy-
sis of independent components. To the contrary, we may also use them to extract
highly dependent random variables, i.e. features. This procedure leads to variable
selection algorithms with very robust properties [52].

The idea works as follows: given a set of patterns X and a set of labels Y ,
find a subset of features from X which maximizes m−2 tr HKHL. Here L is
the kernel matrix on the labels. In the most general case, the matrix K will
arise from an arbitrary kernel k, for which no efficient decompositions exist. In
this situation [52] suggests the use of a greedy feature removal procedure, i.e. to
remove subsets of features iteratively such that m−2 tr HKHL is maximized for
the remaining features.

In general, for particular choices of k and l, it is possible to recover well known
feature selection methods, such as Pearson’s correlation, shrunken centroid, or
signal-to-noise ratio selection. Below we give some examples, mainly when a
linear kernel k(x, x′) = 〈x, x′〉. For more details see [53].
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Pearson’s Correlation is commonly used in microarray analysis [54, 55]. It is
defined as

Rj :=
1
m

m∑
i=1

(
xij − xj

sxj

) (
yi − y

sy

)
where (10)

xj =
1
m

m∑
i=1

xij and y =
1
m

m∑
i=1

yi

s2
xj

=
1
m

m∑
i=1

(xij − xj)2 and s2
y =

1
m

m∑
i=1

(yi − y)2. (11)

This means that all features are individually centered by xj and scaled by
their coordinate-wise variance sxj as a preprocessing step. Performing those
operations before applying a linear kernel yields the formulation:

tr KHLH = tr
(
XX	Hyy	H

)
=

∥∥HX	Hy
∥∥2

(12)

=
d∑

j=1

(
m∑

i=1

(
xij − xj

sxj

) (
yi − y

sy

))2

=
d∑

j=1

R2
j . (13)

Hence trKHLH computes the sum of the squares of the Pearson Correlation
(pc) coefficients. Since the terms are additive, feature selection is straight-
forward by picking the list of best performing features.

Centroid. The difference between the means of the positive and negative classes
at the jth feature, (xj+ −xj−), is useful for scoring individual features. With
different normalization of the data and the labels, many variants can be
derived.

To obtain the centroid criterion [56] use vj := λxj+ − (1 − λ)xj− for
λ ∈ (0, 1) as the score1 for feature j. Features are subsequently selected
according to the absolute value |vj |. In experiments the authors typically
choose λ = 1

2 .
For λ = 1

2 we can achieve the same goal by choosing Lii′ = yiyi′
myi

my
i′

(yi, yi′ ∈
{±1}), in which case HLH = L, since the label kernel matrix is already
centered. Hence we have

tr KHLH =
m∑

i,i′=1

yiyi′

myimyi′
x	

i xi′ (14)

=
d∑

j=1

⎛
⎝

m∑
i,i′=1

yiyi′xijxi′j

myimyi′

⎞
⎠ =

d∑
j=1

(xj+ − xj−)2. (15)

This proves that the centroid feature selector can be viewed as a special case
of BAHSIC in the case of λ = 1

2 . From our analysis we see that other values
of λ amount to effectively rescaling the patterns xi differently for different
classes, which may lead to undesirable features being selected.

1 The parameterization in [56] is different but it can be shown to be equivalent.
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t-Statistic. The normalization for the jth feature is computed as

s̄j =

[
s2

j+

m+
+

s2
j−

m−

] 1
2

(16)

In this case we define the t-statistic for the jth feature via tj = (xj+ −
xj−)/s̄j . Compared to the Pearson correlation, the key difference is that
now we normalize each feature not by the overall sample standard deviation
but rather by a value which takes each of the two classes separately into
account.

Signal to noise ratio is yet another criterion to use in feature selection. The
key idea is to normalize each feature by s̄j = sj++sj− instead. Subsequently
the (xj+ − xj−)/s̄j are used to score features.

Moderated t-score is similar to t-statistic and is used for microarray analy-
sis [57]. Its normalization for the jth feature is derived via a Bayes approach
as

s̃j =
ms̄2

j + m0s̄
2
0

m + m0
(17)

where s̄j is from (16), and s̄0 and m0 are hyperparameters for the prior dis-
tribution on s̄j (all s̄j are assumed to be iid). s̄0 and m0 are estimated using
information from all feature dimensions. This effectively borrows informa-
tion from the ensemble of features to aid with the scoring of an individual
feature. More specifically, s̄0 and m0 can be computed as [57]

m0 = 2Γ ′−1

⎛
⎝1

d

d∑
j=1

(zj − z̄)2 − Γ ′
(m

2

)
⎞
⎠ , (18)

s̄2
0 = exp

(
z̄ − Γ

(m

2

)
+ Γ

(m0

2

)
− ln

(m0

m

))
, (19)

where Γ (·) is the gamma function, ′ denotes derivative, zj = ln(s̄2
j) and

z̄ = 1
d

∑d
j=1 zj.

B-statistic is the logarithm of the posterior odds (lods) that a feature is dif-
ferentially expressed. [58, 57] show that, for large number of features, the
B-statistic is given by

Bj = a + bt̃2j , (20)

where both a and b are constant (b > 0), and t̃j is the moderated-t statistic
for the jth feature. Here we see that Bj is monotonic increasing in t̃j , and
thus results in the same gene ranking as the moderated-t statistic.

2.5 Density Estimation

General setting. Obviously, we may also use the connection between mean
operators and empirical means for the purpose of estimating densities. In fact,
[59, 17, 60] show that this may be achieved in the following fashion:
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maximize
Px

H(Px) subject to ‖μ[X ] − μ[Px]‖ ≤ ε. (21)

Here H is an entropy-like quantity (e.g. Kullback Leibler divergence, Csiszar di-
vergence, Bregmann divergence, Entropy, Amari divergence) that is to be max-
imized subject to the constraint that the expected mean should not stray too
far from its empirical counterpart. In particular, one may show that this ap-
proximate maximum entropy formulation is the dual of a maximum-a-posteriori
estimation problem.

In the case of conditional probability distributions, it is possible to recover a
raft of popular estimation algorithms, such as Gaussian Process classification,
regression, and conditional random fields. The key idea in this context is to
identify the sufficient statistics in generalized exponential families with the map
x → k(x, ·) into a reproducing kernel Hilbert space.

Mixture Model. In problem (21) we try to find the optimal Px over the en-
tire space of probability distributions on X. This can be an exceedingly costly
optimization problem, in particular in the nonparametric setting. For instance,
computing the normalization of the density itself may be intractable, in par-
ticular for high-dimensional data. In this case we may content ourselves with
finding a suitable mixture distribution such that ‖μ[X ] − μ[Px]‖ is minimized
with respect to the mixture coefficients. The diagram below summarizes our
approach:

density p −→ sample X −→ emp. mean μ[X ] −→ estimate via μ[P̂x] (22)

The connection between μ[Px] and μ[X ] follows from Theorem 2. To obtain a
density estimate from μ[X ] assume that we have a set of candidate densities Pi

x

on X. We want to use these as basis functions to obtain P̂x via

P̂x =
M∑
i=1

βiPi
x where

M∑
i=1

βi = 1 and βi ≥ 0. (23)

In other words we wish to estimate Px by means of a mixture model with
mixture densities Pi

x. The goal is to obtain good estimates for the coefficients βi

and to obtain performance guarantees which specify how well P̂x is capable of
estimating Px in the first place. This is possible using a very simple optimization
problem:

minimize
β

∥∥∥μ[X ] − μ[P̂x]
∥∥∥

2

H
subject to β	1 = 1 and β ≥ 0. (24)

To ensure good generalization performance we add a regularizer Ω[β] to the
optimization problem, such as 1

2 ‖β‖2. It follows using the expansion of P̂x in
(23) that the resulting optimization problem can be reformulated as a quadratic
program via

minimize
β

1
2
β	[Q + λ1]β − l	β subject to β	1 = 1 and β ≥ 0. (25)
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Here λ > 0 is a regularization constant, and the quadratic matrix Q ∈ R
M×M

and the vector l ∈ R
M are given by

Qij =
〈
μ[Pi

x], μ[Pj
x]

〉
= E

xi,xj

[
k(xi, xj)

]
(26)

and lj =
〈
μ[X ], μ[Pj

x]
〉

=
1
m

m∑
i=1

E
xj

[
k(xi, x

j)
]
. (27)

By construction Q � 0 is positive semidefinite, hence the quadratic program
(25) is convex. For a number of kernels and mixture terms Pi

x we are able to
compute Q, l in closed form.

Since P̂x is an empirical estimate it is quite unlikely that P̂x = Px. This raises
the question of how well expectations with respect to Px are approximated by
those with respect to P̂x. This can be answered by an extension of the Koksma-
Hlawka inequality [61].

Lemma 1. Let ε > 0 and let ε′ :=
∥∥∥μ[X ] − μ[P̂x]

∥∥∥. Under the assumptions of

Theorem 2 we have that with probability at least 1 − exp(−ε2mR−2),

sup
‖f‖H≤1

∣∣∣Ex∼Px [f(x)] − Ex∼P̂x
[f(x)]

∣∣∣ ≤ 2Rm(H,Px) + ε + ε′. (28)

Proof We use that in Hilbert spaces, Ex∼Px [f(x)] = 〈f, μ[Px]〉 and
Ex∼P̂x

[f(x)] =
〈
f, μ[P̂x]

〉
both hold. Hence the LHS of (28) equates to

sup‖f‖H≤1

∣∣∣
〈
μ[Px] − μ[P̂x], f

〉∣∣∣, which is given by the norm of
∥∥∥μ[Px] − μ[P̂x]

∥∥∥.

The triangle inequality, our assumption on μ[P̂x], and Theorem 2 complete the
proof.

This means that we have good control over the behavior of expectations of
random variables, as long as they belong to “smooth” functions on X — the
uncertainty increases with their RKHS norm.

The above technique is useful when it comes to representing distributions in
message passing and data compression. Rather than minimizing an information
theoretic quantity, we can choose a Hilbert space which accurately reflects the
degree of smoothness required for any subsequent operations carried out by the
estimate. For instance, if we are only interested in linear functions, an accurate
match of the first order moments will suffice, without requiring a good match in
higher order terms.

2.6 Kernels on Sets

Up to now we used the mapping X → μ[X ] to compute the distance between
two distributions (or their samples). However, since μ[X ] itself is an element of
an RKHS we can define a kernel on sets (and distributions) directly via

k(X, X ′) := 〈μ[X ], μ[X ′]〉 = 1
mm′

m,m′∑
i,j

k(xi, x
′
j). (29)
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In other words, k(X, X ′), and by analogy k(Px,Px′) := 〈μ[Px], μ[Px′ ]〉, define
kernels on sets and distributions, and obviously also between sets and distribu-
tions. If we have multisets and sample weights for instances we may easily include
this in the computation of μ[X ]. It turns out that (29) is exactly the set kernel
proposed by [62], when dealing with multiple instance learning. This notion was
subsequently extended to deal with intermediate density estimates by [63]. We
have therefore that in situations where estimation problems are well described
by distributions we inherit the consistency properties of the underlying RKHS
simply by using a universal set kernel for which μ[X ] converges to μ[Px]. We
have the following corollary:

Corollary 2. If k is universal the kernel matrix defined by the set/distribution
kernel (29) has full rank as long as the sets/distributions are not identical.

Note, however, that the set kernel may not be ideal for all multi instance prob-
lems: in the latter one assumes that at least a single instance has a given property,
whereas for the use of (29) one needs to assume that at least a certain fraction
of instances have this property.

3 Summary

We have seen that Hilbert space embeddings of distributions are a powerful tool
to deal with a broad range of estimation problems, including two-sample tests,
feature extractors, independence tests, covariate shift, local learning, density es-
timation, and the measurement of similarity between sets. Given these successes,
we are very optimistic that these embedding techniques can be used to address
further problems, ranging from issues in high dimensional numerical integration
(the connections to lattice and Sobol sequences are apparent) to more advanced
nonparametric property testing.
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[34] Arcones, M., Giné, E.: On the bootstrap of u and v statistics. The Annals of
Statistics 20(2), 655–674 (1992)

[35] Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions,
2nd edn., vol. 1. John Wiley and Sons, Chichester (1994)

[36] Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.P., Schölkopf, B., Smola,
A.J.: Integrating structured biological data by kernel maximum mean discrepancy.
Bioinformatics 22(14), e49–e57 (2006)

[37] Huang, J., Smola, A., Gretton, A., Borgwardt, K., Schölkopf, B.: Correcting sam-
ple selection bias by unlabeled data. In: Schölkopf, B., Platt, J., Hofmann, T.
(eds.) Advances in Neural Information Processing Systems, vol. 19, MIT Press,
Cambridge (2007)

[38] Shimodaira, H.: Improving predictive inference under convariance shift by weight-
ing the log-likelihood function. Journal of Statistical Planning and Inference 90
(2000)

[39] Bottou, L., Vapnik, V.N.: Local learning algorithms. Neural Computation 4(6),
888–900 (1992)

[40] Comon, P.: Independent component analysis, a new concept? Signal Processing 36,
287–314 (1994)

[41] Lee, T.W., Girolami, M., Bell, A., Sejnowski, T.: A unifying framework for inde-
pendent component analysis. Comput. Math. Appl. 39, 1–21 (2000)

[42] Bach, F.R., Jordan, M.I.: Kernel independent component analysis. J. Mach. Learn.
Res. 3, 1–48 (2002)

[43] Gretton, A., Bousquet, O., Smola, A., Schölkopf, B.: Measuring statistical depen-
dence with Hilbert-Schmidt norms. In: Jain, S., Simon, H.U., Tomita, E. (eds.)
Proceedings Algorithmic Learning Theory, pp. 63–77. Springer, Heidelberg (2005)

[44] Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B.: Kernel methods
for measuring independence. J. Mach. Learn. Res. 6, 2075–2129 (2005)

[45] Shen, H., Jegelka, S., Gretton, A.: Fast kernel ICA using an approximate newton
method. In: AISTATS 11 (2007)

[46] Feuerverger, A.: A consistent test for bivariate dependence. International Statis-
tical Review 61(3), 419–433 (1993)



A Hilbert Space Embedding for Distributions 31

[47] Kankainen, A.: Consistent Testing of Total Independence Based on the Empirical
Characteristic Function. PhD thesis, University of Jyväskylä (1995)
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I postulate that human or other intelligent agents function or should function
as follows. They store all sensory observations as they come—the data is ‘holy.’
At any time, given some agent’s current coding capabilities, part of the data is
compressible by a short and hopefully fast program / description / explanation /
world model. In the agent’s subjective eyes, such data is more regular and more
beautiful than other data [2,3]. It is well-known that knowledge of regularity and
repeatability may improve the agent’s ability to plan actions leading to external
rewards. In absence of such rewards, however, known beauty is boring. Then
interestingness becomes the first derivative of subjective beauty: as the learn-
ing agent improves its compression algorithm, formerly apparently random data
parts become subjectively more regular and beautiful. Such progress in data
compression is measured and maximized by the curiosity drive [1,4,5]: create
action sequences that extend the observation history and yield previously un-
known / unpredictable but quickly learnable algorithmic regularity. We discuss
how all of the above can be naturally implemented on computers, through an
extension of passive unsupervised learning to the case of active data selection:
we reward a general reinforcement learner (with access to the adaptive compres-
sor) for actions that improve the subjective compressibility of the growing data.
An unusually large data compression breakthrough deserves the name discov-
ery. The creativity of artists, dancers, musicians, pure mathematicians can be
viewed as a by-product of this principle. Good observer-dependent art deepens
the observer’s insights about this world or possible worlds, unveiling previously
unknown regularities in compressible data, connecting previously disconnected
patterns in an initially surprising way that makes the combination of these pat-
terns subjectively more compressible, and eventually becomes known and less
interesting. Several qualitative examples support this hypothesis.

� The full version of this paper is published in the Proceedings of the 10th International
Conference on Discovery Science, Lecture Notes in Artificial Intelligence Vol. 4755.
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Abstract. For learning functions in the limit, an algorithmic learner
obtains successively more data about a function and calculates trials each
resulting in the output of a corresponding program, where, hopefully,
these programs eventually converge to a correct program for the function.
The authors desired to provide a feasible version of this learning in the
limit — a version where each trial was conducted feasibly and there was
some feasible limit on the number of trials allowed. Employed were basic
feasible functionals which query an input function as to its values and
which provide each trial. An additional tally argument 0i was provided
to the functionals for their execution of the i-th trial. In this way more
time resource was available for each successive trial. The mechanism
employed to feasibly limit the number of trials was to feasibly count
them down from some feasible notation for a constructive ordinal. Since
all processes were feasible, their termination was feasibly detectable, and,
so, it was possible to wait for the trials to terminate and suppress all the
output programs but the last. Hence, although there is still an iteration
of trials, the learning was a special case of what has long been known
as total Fin-learning, i.e., learning in the limit, where, on each function,
the learner always outputs exactly one conjectured program. Our general
main results provide for strict learning hierarchies where the trial count
down involves all and only notations for infinite limit ordinals. For our
hierarchies featuring finitely many limit ordinal jumps, we have upper
and lower total run time bounds of our feasible Fin-learners in terms of
finite stacks of exponentials. We provide, though, an example of how to
regain feasibility by a suitable parameterized complexity analysis.
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referee provided hints about the truth and truth and proof, respectively, of what
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This same referee suggested, for the future, team learning as an approach to studying
some probabilistic variants of our learning criteria.
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1 Introduction and Motivation

One-shot (algorithmic) learners, on input data about a function, output at most
a single (hopefully correct) conjectured program [JORS99]. Feasible (determin-
istic) one-shot function learning can be modeled by the polytime multi-tape
Oracle Turing machines (OTMs) as used in [IKR01] (see also [KC96, Meh76]).
We call the corresponding functionals basic feasible functionals.

In the context of learning in the limit, i.e., learning with a succession of one-
shots, where only the final shots are hoped to be correct, we are interested, then,
in how one might define feasible for limiting-computable functionals. We next
discuss the concepts we require for such a definition.

Intuitively ordinals [Sie65] are representations of well-orderings. 0 represents
the empty ordering, 1 represents the ordering of 0 by itself, 2 the ordering 0 < 1,
3 the ordering 0 < 1 < 2, . . . . The ordinal ω represents the standard ordering
of all of N. ω + 1 represents the ordering of N consisting of the positive integers
in standard order followed by 0. The successor ordinals are those of the form
α + 1 which have a single element laid out after a copy of another ordinal α.
ω + ω can be thought of as two copies of ω laid end to end — much bigger
than ω. ω · 3 represents three copies of ω laid end to end. By contrast, 3 · ω
represents ω copies of 3 — which is just ω. We see, for ordinals, +, · are not
commutative. ω · ω is ω copies of ω laid out end to end. We can iterate this
and define exponentiation for ordinals. Limit ordinals are those, like ω, ω + ω,
ω · ω, and ωω, which are not 0 and are not successor ordinals. All of them are
infinite. Importantly, the constructive ordinals are just those that have a program
(called a notation) in some system which specifies how to build them (lay them
out end to end, so to speak). Everyone knows how to use the natural numbers
for counting, including for counting down. Freivalds and Smith [FS93], as well
as [ACJS04], employed in learning theory notations for constructive ordinals as
devices for algorithmic counting down. Herein we need to count down iterations
of applications of feasible learning functionals. For example, for us, as we will see
more formally in Section 4 below, algorithmic counting down iterations from any
notation u for ω + 1 is roughly equivalent to counting down one iteration and,
then, deciding dynamically how many further but finite number of iterations
will be allowed. Herein, though, we want the counting down process itself to
be feasible. Hence, in Section 3, we introduce feasibly related feasible systems of
ordinal notations, where, basically, the definition of a system of ordinal notations
(as in [Rog67]) is restricted to those systems where all necessary operations and
decision processes are feasibly computable. In Section 3, by Theorem 8, for each
constructive ordinal α, we have such a system containing a notation for α and
all its predecessors.

In Section 4, we present our proposed definition (Definition 11) for feasible it-
eration of feasible learning functionals. Then we present our general main results
providing for strict learning hierarchies at all and only notations for (infinite) limit
ordinals. First, Theorem 14 provides the learning hierarchy collapse between fea-
sible notations for α and for α + 1. Importantly, Theorem 17, provides a strict
learning hierarchy between feasible notations for successive feasible limit ordinals.



36 J. Case, T. Kötzing, and T. Paddock

In Section 5, our main results involve upper and lower runtime bounds for
learning hierarchies featuring feasibly counting down from feasible notations for
the successive initial limit ordinals ω · n, n = 1, 2, 3, . . . . These runtime bounds
are expressed in terms of exponential polynomials q. In Theorem 20, for learning
featuring feasible counting down from feasible notations for ω · n, the stacking
of exponentials in the upper bound q is no more than n. Theorem 21 says there
are classes learnable featuring feasible counting down from feasible notations for
ω · n, where the stacking of exponentials in the lower bound q is at least n.
In Section 5, we provide, though, an example of how to regain feasibility by a
suitable parameterized complexity analysis [DF98].

Due to space constraints some portions of proofs are omitted. Complete proofs
are in [CPK07].

2 Mathematical Preliminaries

N denotes the set of natural numbers, {0,1,2,. . . }. We do not distinguish be-
tween natural numbers and their dyadic representation.1 card(D) denotes the
cardinality of a set D.

The symbols ⊆, ⊂, ⊇, ⊃ respectively denote the subset, proper subset, superset
and proper superset relation between sets.

We sometimes denote a function f of n > 0 arguments x1, . . . , xn in lambda
notation (as in Lisp) as λx1, . . . , xn f(x). For example, with c ∈ N, λx c is the
constantly c function of one argument. From now on, by convention, f and g
with or without decoration range over functions N → N, x, y with or without
decorations range over N, 0i, 0j range over {0}∗.

We use ‘string’ and ‘finite sequence’ synonymously, and, for each sequence s,
we will denote the first element of that sequence by s(0), (or, equivalently, with
s0,) the second with s(1) (or s1) and so on.

Similarly we will consider infinite sequences s as functions with domain N (or
N ∪ {−1}, as the case may be), and denote them at position a in the domain by
s(a) or sa.

For each string w, define len(w) to be the length of the string. As we iden-
tify each natural number x with its dyadic representation, len(x) denotes the
length of the dyadic representation of x. For all strings w, we define |w| to be
max{1, len(w)}.2

Following [LV97], we define for all x ∈ N: x = 1len(x)0x. Using this notation
we can define a function 〈·〉 coding tuples of natural numbers of arbitrary size
(k ≥ 0) into N such that 〈v1, . . . , vk〉 := v1 . . . vk.

For example the tuple (4, 7, 10)decimal = (01, 000, 011)dyadic would be coded
as 11 0 01 111 0 000 111 0 011 (but without the spaces added for ease of parsing).

1 The dyadic representation of a natural number x := the x-th finite string over {0, 1}
in lexicographical order, where the counting of strings starts with zero [RC94]. Hence,
unlike with binary representation, lead zeros matter.

2 ε denotes the empty string. This convention about |ε| = 1 helps with runtime con-
siderations.
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Obviously 〈·〉 is 1-1. The time to encode tuples, that is, to compute
λv1, . . . , vk 〈v1, . . . , vk〉 is ∈ O(λv1, . . . , vk

∑k
i=1 |vi|). Therefore the size of the

codeword is also linear in the size of the components: λv1, . . . , vk |〈v1, . . . , vk〉| ∈
O(λv1, . . . , vk

∑k
i=1 |vi|). Decoding is linear in the length of the codeword: For

all k, i ≤ k, we have that λ〈v1, . . . , vk〉 vi is computable in linear time, so is
λ〈v1, . . . , vk〉 k.

A function ψ is partial computable iff there is a Turing machine computing ψ.
ϕTM is the fixed programming system from [RC94, Chapter 3] for the partial

computable functions. This system is based on deterministic, multi-tape Turing
machines (TMs). In this system the TM-programs are efficiently given numer-
ical names or codes.3 ΦTM denotes the TM step counting complexity measure
also from [RC94, Chapter 3] and associated with ϕTM. In the present paper,
we employ a number of complexity bound results from [RC94, Chapters 3 & 4]
regarding (ϕTM, ΦTM). These results will be clearly referenced as we use them.
For simplicity of notation, hereafter we write (ϕ, Φ) for (ϕTM, ΦTM). ϕp denotes
the partial computable function computed by the TM-program with code num-
ber p in the ϕ-system, and Φp denotes the partial computable runtime function
of the TM-program with code number p in the ϕ-system.

Whenever we consider tuples of natural numbers as input to TMs, it is un-
derstood that the general coding function 〈·〉 is used to code the tuples into
appropriate TM-input. We say that a function from k-tuples of natural numbers
into N is feasibly computable iff, for some p, it is computed by TM p in polytime
in the lengths of its inputs.4

The next definitions provide the formal details re the polytime constraint on
basic feasible functionals.

The length of f : N → N is the function |f | : N → N such that |f | =
λn. max({|f(x)| | |x| ≤ n}).

A second-order polynomial over type-1 variables g0, . . . , gm and type-0 vari-
ables y0, . . . , yn (in this paper simply referred to as a polynomial) is an expression
of one of the following five forms.

a; yi; q1 + q2; q1 · q2; gj(q1)

where a ∈ N, i ≤ n, j ≤ m, and q1 and q2 are second-order polynomials over −→g
and −→y .

A subpolynomial of q is, recursively, any polynomial which is used in the
construction of q, or which is a subpolynomial of a polynomial that is used in
the construction of q.

We understand each such polynomial q as a symbolic object and for functions
f0, . . . , fm : N → N, x0, . . . , xn ∈ N we write q(f0, . . . , fm, x0, . . . , xn) as the
obvious evaluation of q to an element in N.
3 This numerical coding guarantees that many simple operations involving the coding

run in linear time. This is by contrast with historically more typical codings featuring
prime powers and corresponding at least exponential costs to do simple things.

4 We are mostly not considering herein interesting polytime probablistic or quantum
computing variants of the deterministic feasibility case.
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For two functions h1, h2 : N → N we write h1 ≤ h2 :⇔ ∀n ∈ N : h1(x) ≤ h2(x)
and we say that h2 majorizes h1. It is easy to see from the definition of a
second-order polynomial q that λf0, . . . , fm, x0, . . . , xn q(f0, . . . , fm, x0, . . . , xn)
is non-decreasing in each argument, given that all function-arguments are non-
decreasing and order on functions is as defined just above.

An Oracle Turing Machine (OTM) is a multi-tape Turing Machine that also
has a query tape and a reply tape. To query an oracle f , an OTM writes the
dyadic representation of an x ∈ N on the query tape and enters its query state.
The query tape is then erased, and the dyadic representation of f(x) appears
on the reply tape. This model is extended to the case of multiple oracles in
the obvious way. The (time) cost model is the same as for non-oracle Turing
machines, except for the additional cost of a query to the oracle. This is handled
with the length-cost model, where the cost of a query is |f(x)|, where |f(x)| is
the length of the string on the reply tape.

Suppose k ≥ 1 and l ≥ 0. Then F : (N → N)k × N
l → N is a basic feasible

functional if and only if there is an OTM M and a second-order polynomial q,
such that, for each input (f1, . . . , fk, x1, . . . , xl),

(a) M outputs F (f1, . . . , fk, x1, . . . , xl), and
(b) M runs within q(|f1|, . . . , |fk|, |x1|, . . . , |xl|) time steps (we will then say that

q majorizes the runtime of F ).

Any unexplained computability-theoretic notions are from [Rog67].

3 Feasible Systems of Ordinal Notations

In this section we begin with some definitions regarding systems of ordinal no-
tations. The first definition is quite technically useful in our proofs in Section 4
below.

Definition 1. For a system of ordinal notations S as, for example, in [Rog67],
a pair (lS , nS) is a decompose pair for S iff lS and nS are functions N → N and
for all notations u ∈ S for an ordinals α, lS(u) denotes a notation for the biggest
(limit ordinal or 0) λ ≤ α, and nS(u) is such that α = λ + nS(u).

Definition 2. (Feasible System of Ordinal Notations) For an ordinal α, a fea-
sible system of ordinal notations for all and only the ordinals < α is a tuple
(S, νS , limS , +S, ·S , lS , nS) where S ⊆ N, νS maps N onto the set of all ordinals
< α, limS : N × {0}∗ → N, +S and ·S are ordinal sum and multiplication on
notations respectively5 and (lS , nS) is a decompose pair for S.6 Additionally we
require:
The following predicates over u ∈ S are feasibly decidable.

(a) “u is a notation for 0”,
5 Therefore, each feasible system of ordinal notations will give notation to an additively

and multiplicatively closed set of ordinals.
6 We will sometime ambiguously refer to (S, νS , limS, +S, ·S , lS , nS) as S.
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(b) “u is a notation for a successor ordinal” and
(c) “u is a notation for a limit ordinal”.

And:

(d) There is a feasibly computable function predS such that for all u notations
for a successor ordinal α + 1, predS(u) is a notation for α.

(e) limS is a feasible function and for all limit-ordinals λ < α and notations l
for λ we have that (νS(limS(l, 0i)))i<ω is a strictly increasing sequence of
ordinals with limit λ.

Up to this point in this definition, we have a modification of Rogers’ concept of
system of ordinal notations [Rog67], where, when we require feasible computabil-
ity, Rogers requires only partial computability. Additionally we require

(f) +S is feasibly computable,
(g) ·S is feasibly computable,
(h) from any natural number n, a notation nS for n is feasibly computable and
(i) lS , nS are feasibly computable.

Definition 3. Following Rogers [Rog67], we say that a system of ordinal nota-
tions S is univalent iff νS is 1-1; we define the relation ≤S on natural numbers
such that: u ≤S v ⇔ [u, v ∈ S ∧ νS(u) ≤ νS(v)]. Also following Rogers, we say a
system of ordinal notations S is computably related iff ≤S is computably decid-
able, and computably decidable iff the set of notations S is computably decidable.
Analogously, we define a system S to be feasibly related iff ≤S is feasibly decid-
able, and feasibly decidable iff the set S is feasibly decidable.

Remark 4. In Definition 2 above we have that feasible relatedness, together
with (f), (h) and (i) implies (a)-(d). Every feasibly related feasible system of
ordinal notations S is feasibly decidable, as we have: u ∈ S ⇔ u ≤S u. Every
feasibly related feasible system of ordinal notations is a computably related
system of ordinal notations.7 For a feasibly related or univalent feasible system of
ordinal notations S, it is feasibly decidable whether two notations are notations
for the same ordinal.8

Lemma 5. Suppose S is a system of ordinal notations in which a notation in
S for the successor ordinal is feasibly computable from a given notation in S.
Let limS : N × {0}∗ → N be a computable function satisfying the analog of (e)
where “feasible” is replaced by “partial computable”. Then there is a feasibly
computable function lim′

S : N × {0}∗ → N satisfying (e).

7 Therefore, all theorems for computably related systems of ordinal notations hold.
For example, there cannot be a feasibly related feasible system of ordinal notations
for all constructive ordinals (see [Rog67]).

8 For univalent systems there are of course no two different notations for the same
ordinal. For a feasibly related systems of ordinal notations, u, v ∈ N are notations in
S for the same ordinal iff [u ≤S v and v ≤S u].
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Proofsketch. Define lim′
S thus. On input (u, 0i), run limS on inputs (u, 0j) for

all j ≤ i, each for up to i steps. If none converges, output i — a notation in S for
i. Otherwise, for some j ≤ i, limS(u, 0j) converges. In this case, for the maximal
such j, compute the i-times successor of limS(u, 0j) and output the result — a
notation for νS(limS(u, 0j)) + i. Importantly, thanks to [RC94, Corollary 3.7],
the algorithm just provided for lim′

S is feasible. We omit the remaining details
of the proof.

Lemma 6. Suppose S is a computably related system of ordinal notation for
all and only the ordinals < α for some ordinal α. Then there is a feasibly related
system S′ of ordinal notations for all and only the ordinals < α.

Proof. Define S′ thus. Let e be the numerical name for a program deciding
≤S . Define t : N → N, u �→ max({Φe(i, j) | i, j ≤ u}). Let S′ be the system
of notations where for all β given a notation u in S, we have that 〈0t(u), 0u〉
is a notation for β. Obviously, ∀m, n, u, v ∈ N : 〈0m, 0u〉 ≤S′ 〈0n, 0v〉 ⇔
[ϕe(u, v) = 1 in ≤ max{n, m} steps and m = t(u) and n = t(v)]. It follows from
[RC94, Lemma 3.2(f) and Corollary 3.7] that λ0m, 0u t(u) = m is feasibly de-
cidable. Therefore, on the resulting notations we have that order is feasibly
decidable.

Lemma 7. Suppose S is a feasibly related system of ordinal notations giving
a notation to all and only the ordinals < α for some ordinal α. Then there is
a feasibly related system of ordinal notations S′ fulfilling (a)-(f) and (h)-(i) as
in Definition 2, giving a notation at least to all ordinals < α. In fact, S′ gives a
notation to all and only the ordinals < ωα. If S is univalent, so is S′.

Proofsketch. Assume without loss of generality that 0 is the only notation for
0 in S. Let 〈〉 be a notation in S′ for 0. By the Cantor Normal Form theorem,
each ordinal γ, 0 < γ < ωα has exactly one representation such that γ =∑0

i=k ωδi ×ni, where α > δk > . . . > δ0 ≥ 0 and nk, . . . , n0 ∈ N\{0} (see [Sie65,
Theorem 2, Chapter XIV.19, page 323]). Define a system S′ by the following
assignment of notations. For each γ with 0 < γ < ωα, the representation as
above and dk, . . . , d0 notations in S for δk, . . . , δ0, respectively, let

〈dk, nk, . . . , d0, n0〉 be a notation in S′ for γ.

From here we omit most remaining details. To show (e) for S′: We apply
Lemma 5.

Theorem 8. Suppose S is a feasibly related system of ordinal notations giving
a notation to all and only the ordinals < α. Then there is a feasibly related
feasible system of ordinal notations S′ giving a notation at least to all ordinals
< α. In fact, S′ gives a notation to all and only the ordinals < ωωα

. If S is
univalent, so is S′.

Proofsketch. Apply the construction of the proof of Lemma 7 twice to S. The
resulting system will also allow for feasible multiplication.
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Corollary 9. Let α be a constructive ordinal. Then there is a univalent, feasibly
related feasible system of ordinal notations giving a notation to α.

Proof. By [Rog67, Theorem 11.XIX], there is a univalent, computably related
system of ordinal notations giving a notation to α. The result follows now from
first applying Lemma 6 and then Theorem 8.

Assumption 10. For the rest of this paper, fix an arbitrary univalent feasibly
related feasible system of ordinal notations S. We furthermore make the following
assumption.

∀u ∈ S, n ∈ N : |n| ≤ |n| ≤ |u +S n| . (1)

This reasonable assumption holds for all systems constructed in the proof
of Corollary 9. (1) above also shows that for all u ∈ S we have |nS(u)| ≤
|lS(u) + nS(u)| = |u|; therefore, we get

∀u ∈ S : nS(u) ≤ u . (2)

4 Hierarchies at Limit Ordinal Jumps

Next is our proposed definition of feasible iteration of feasible learning functionals.

Definition 11. Suppose u ∈ S. A set of functions S is ItruBffFin-identifiable
(we write S ∈ ItruBffFin) iff there exist basic feasible functionals H : (N →
N)× {0}∗ → N and F : (N → N)× {0}∗ → N such that for all f ∈ S there exists
k ∈ N such that

(a) F (f, 0t) <S u for all t < k,9

(b) F (f, 0t+1) <S F (f, 0t) for all t < k,
(c) F (f, 0k) = 0 and
(d) ϕH(f,0k) = f .

Lemma 12. Without loss of generality the count down function F in Defini-
tion 11 can be chosen such that for all computable functions f there is a k ∈ N

such that (a) and (b) in Definition 11 hold, as well as ∀t ≥ k : F (f, 0t) = 0.

Proof. Let q be a polynomial upper-bounding the runtime of F . Then there
is F ′ such that F ′ on input (f, 0t) computes for all w ≤ t F (f, 0w) (taking
time in O(

∑t
w=0 q(|f |, w)) ⊆ O(t · q(|f |, t))). If we have F (f, 00) <S u and for

all w < t F (f, 0w+1) <S F (f, 0w) (t comparisons decidable in polytime), then
output F (f, 0t), otherwise output 0.

9 Earlier papers using count down functions, such as for example [ACJS04], usually
use instead, at this point in the definition, ≤S u. This earlier way of starting count
downs can be recovered in the version presented herein by using <S u +S 1. Our
present version has additional expressibility for u being a notation for a limit ordinal,
which is not available in a version starting with ≤S u. However, it is a theorem in
this paper (Theorem 14 below) that, for our way herein of starting count downs, no
resultant extra learning power class exists.
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Assumption 13. From now on, all witnesses for a set to be in ItruBffFin to
have these additional properties as stated in Lemma 12. Witnesses explicitly
constructed might not have this property.

Note that for all u ∈ S, as it is also the case for many other identification
criteria [JORS99], ItruBffFin is closed under taking subsets.

The first theorem shows that there is no difference in learning power for an
ordinal and its successor:

Theorem 14. Suppose u ∈ S. Then ItruBffFin = Itr(u+S1)BffFin.

Proof. Trivial for u a notation for 0. Otherwise, let S ∈ Itr(u+S1)BffFin as
witnessed by (H, F ). We have for all f ∈ S: F (f, 00) <S u ∨ F (f, 01) <S

u. Let P := λf μi < 2 (F (f, 0i) <S u); H ′ := λf, 0i H(f, 0i+P (f)); F ′ :=
λf, 0i F (f, 0i+P (f)). So (H ′, F ′) witnesses S ∈ ItruBffFin.

Recall that in the mathematical preliminaries it has been mentioned that all
polynomials as defined in this paper fulfill several monotonicity constraints. Fur-
thermore, we can find a single polynomial upper bounding the runtime all func-
tions of a given, finite set of BFFs (for example by adding all polynomials for
each single BFF up). The next definition gives a desirable property of polyno-
mials. The following remark will imply that we can – for all uses of polynomials
in this paper – suppose without loss of generality that our polynomials have this
property.

Definition 15. A polynomial q is called request-bounding iff for all polynomials
q′ such that g(q′) is a subpolynomial of q we have that q majorizes q′.

Remark 16. For all polynomials q there is a request-bounding polynomial ma-
jorizing q.

Proof. Let q be a polynomial, q′ a polynomial such that g(q′) is a sub-
polynomial of q and q does not majorize q′. We have that q := q +
q′ majorizes q and q′ such that {r | g(r) is a subpolynomial of q} =
{r | g(r) is a subpolynomial of q}. Iterating this construction of a bigger poly-
nomial will finally yield a polynomial with the desired properties. ��

Next is the main theorem of this section. It provides a strict learning power
hierarchy.

Theorem 17. Suppose u <S v ∈ S represent non-successor ordinals. Then
ItruBffFin ⊂ ItrvBffFin.

Proofsketch. The inclusion is trivial, so that the separation remains to be
shown. This is done by constructing a suitable set of total computable functions
which belongs to the right set, but not to the left. Let S∗ be the set of all functions
f such that: There is a sequence r of notations for non-successor ordinals, strictly
decreasing (with respect to <S), where r(0) < v. There is a strictly increasing
sequence s of natural numbers of length len(r) + 1 such that:
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(a) s(0) = 1,
(b) for all i < len(s) − 1 : s(i + 1) ∈ {2f(s(i)), . . . , 2f(s(i)) + |f(0)| − 1},10

(c) for all i < len(s) − 1 : f(s(i)) ∈ S,
(d) for all i < len(s) − 1 : lS(f(s(i))) = r(i),
(e) r(len(r) − 1) = 0 and
(f) for all i ∈ N: i ∈ (range(s) ∪ {0}) ⇔ f(i) �= 0.

That our S∗ witnesses the separation of Theorem 17 just above provides the
reason its use in Proposition 22 (in Section 5 below) is interesting.

Define S := {f ∈ S∗ | |f(0)| = 1}. To save space in this proof, we will actually
show instead that S, a proper subset of S∗, witnesses the separation. Of course,
the negative part of the separation trivially applies to supersets.
Claim: S ∈ ItrvBffFin
Proof (of claim). Let e be such that for all finite functions σ (treated as strings
of size len(σ), coded onto the tape by 〈〉), and for all x ∈ N,

ϕe(σ, x) =
{

σ(i) , if i < len(σ) such that x = 2i;
0 , otherwise.

Runtime in O
F on (f, 0t):

query f for σ := λi ≤ t f(2i) |f |(t) · t
determine biggest index i ≤ t such that f(2i) > 0 |f |(t) · t
if such an index does not exist, output 0
if two such indices exist, let l < i be the biggest two
if lS(f(2i)) = 0 redefine i := l
output lS(f(2i)) +S (f(2i) − t)

The next functional makes use of a linear time instance of an s-m-n-function.11

H on (f, 0t):
query f for σ := λi ≤ t f(2i) |f |(t) · t
output s-m-n(e, σ) linear time s-m-n

(H, F ) shows the claim. (of claim)

Claim: S �∈ ItrvBffFin.
Proof (of claim). Suppose by way of contradiction otherwise, as witnessed by
(H, F ). Let q(g, x) be a polynomial with the following properties. q strictly
majorizes the runtime of F and H ; q is request-bounding; and, for technical
reasons, for all c, n ∈ N, q(λx c, n) ≥ c.12

Define now two functions a, b : N × N → N such that ∀x, y : a(x, y) =
q(λz |x|, y), b(x, y) = q(λz |x|, a(x, y)). For all x, y ∈ N, a(x, y) is, then, an
10 This entails, as s is required to be strictly increasing, that f(s(i)) > 0 for all i <

len(s) − 1.
11 Linear time s-m-n is a function s running in linear time such that ∀e, x, y :

ϕs(e,x)(y) = ϕe(x, y); see [RC94, Theorem 4.7(b)].
12 For each polynomial q′, q′ + g(0) is an example polynomial fulfilling this property.
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upper runtime-bound for the computation of F on second argument 0y, if the
first argument is never requested at anything yielding something bigger then x.
For all x, y ∈ N, b(x, y) is an upper runtime-bound for the computation of F on
second argument 0a(x,y) with the same restriction on the first argument.

Let w be a notation for ω. We define, by multiply recursive calls, for i ≥ 0,
infinite sequences s, v and a computable function f as follows.

v−1 = 0
s(0) = 1

f(s(0)) = v0 = u +S x,

where x minimal so that v0 > b(v0, v−1) and
|v0| > 2b(v−1,0) + 1

s(i + 1) =
{

2vi , if vi �= 0
max{s(j) | j ≤ i} + 1, otherwise

f(s(i + 1)) = vi+1 =

⎧
⎪⎪⎨
⎪⎪⎩

0, if there is j < i − 1 such that lS(vj) = w
1, if lS(vi−1) = w
((vi + 1) + x), if lS(vi) = w

(F (f, 0a(vi,vi−1)) +S w) +S ((vi + 1) + x), otherwise

where x minimal so that vi+1 > b(vi+1, vi) and
|vi+1| > 2b(vi,vi−1) + a(vi, vi−1) + 1

Define f on all so far undefined values as 0.
Notes on the construction:

– To show that the condition on v0 is possible: On the one hand, by Assump-
tion 10 in Section 3, λx u +S x grows at least as fast as λx x, and λx x
grows exponentially in the length of its argument, and, on the other hand,
λx b(u+Sx, 0) grows only polynomially in the length of its argument. Similar
reasoning holds for the condition on vi+1.

– As part (f) of the proof of the next subclaim we will show that, in the
computation of F (f, 0a(vi,vi−1)), the value of f at s(i + 1) will never be
requested. This avoids f(s(i + 1)) calling itself.

Let m be maximal such that vm �= 0. Clearly, from above, for all i such
that 0 ≤ i ≤ m, vi �= 0. Abbreviate for all i ≤ m: ai := a(vi, vi−1) and
bi := b(vi, vi−1).

Subclaim: f, s, v are well defined.
Proof (of subclaim). We proof this by induction on i < m. We have the following
induction invariants.

(a) if 0 ≤ i, then bi < vi,
(b) if 0 ≤ i, then there are > vi steps required to query f at s(i + 1),
(c) if 0 ≤ i, then f is circle-free defined up through s(i + 1) − 1,
(d) if 0 ≤ i, then ∀t ≤ bi : |f |(t) < vi,
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(e) if 0 ≤ i, then bi is an upper runtime bound for F on (f, 0ai),
(f) if 0 ≤ i, then f(s(i + 1)) is not requestable in the computation of F on

(f, 0ai).
(g) vi+1 is well defined

These invariants hold obviously for i = −1. Let now i < m be such that 0 ≤ i
and these induction invariants hold for for all k < i such that −1 ≥ k. We show
now that the invariants hold for i.

To show (a): By construction we have vi > b(vi, vi−1) = bi.
To show (b): We have |s(i + 1)| = |2vi | = vi. Therefore, vi steps are required

to write s(i+1) on the query tape; at least an additional step is used to complete
this query process.

To show (c): Follows from for all k < i, vk+1 well defined (that is, ∀k ≤ i, vk

is well defined).
To show (d): Let t ≤ bi. We have:

|f |(t) ≤ |f |(bi) = max
|x|≤bi

|f(x)| ≤ max
|x|≤vi

|f(x)| ≤ max
x<2vi

|f(x)| = |vi| < vi .

To show (e): By induction on the polynomials q′ such that g(q′) is a sub-
polynomial of q. Using invariant (d) and q being request-bounding it is easy to
show that all such polynomials q′ evaluate on (|f |, ai) to something ≤ bi. Then
we can conclude that q(|f |, ai) ≤ bi.

To show (f): (b), (e) and (a) show (f).
To show (g): From (f). (of subclaim)

It is now easy to verify that f ∈ S, and, then, a simple adversary argument
(as, for example, in [DZ01]) shows that either f or f modified at s(m) (so that
the modified version is still in S) is not properly identified by (H, F ).

(of claim) (of theorem)

5 Upper and Lower Bounds on Runtime

For this section assume S gives a notation to at least all ordinals < ω2 (the
existence of such an S is guaranteed by Corollary 9). In this section we will
characterize the hierarchy of finitely many limit ordinal jumps in terms of ex-
plicit total runtime bounds. The next definition introduces polynomials with
exponential terms and the exponential nesting depth of such.

Definition 18 (Polynomials with Exponentials). We define recursively
in parallel the set Q[g] of symbolic polynomials with exponentials, as well
as the exponential nesting depth of q ∈ Q[g], rk(q), (read: rank of q):
for all a ∈ N: a ∈ Q[g], rk(a) = 0,
for all q1,q2 ∈ Q[g]: (q1 + q2) ∈ Q[g], rk((q1 + q2)) = max(rk(q1), rk(q2)),
q1,q2 ∈ Q[g]: q1 · q2 ∈ Q[g], rk(q1 · q2) = max(rk(q1), rk(q2)),
for all q ∈ Q[g]: g(q) ∈ Q[g], rk(g(q)) = rk(q),
for all q ∈ Q[g]: 2ˆ(q) ∈ Q[g], rk(2ˆ(q)) = rk(q) + 1.
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The following definition will enable us to study the runtime of functionals beyond
the feasible.

Definition 19. Suppose k ≥ 1 and l ≥ 0. Then F : (N → N)k × N
l → N is

a computable functional if and only if there is an OTM M such that, for each
input (f1, . . . , fk, x1, . . . , xl), M outputs F (f1, . . . , fk, x1, . . . , xl).

The two theorems below are our main results of the present section.

Theorem 20 (Learning Time – Upper Bound). Let n > 0. Let S ∈
Itrw·nBffFin. Then there is a computable functional h such that

– ∀f ∈ S : ϕh(f) = f
– the runtime of h is bounded above by some q ∈ Q[g] such that rk(q) ≤ n.

Proof. Let S ∈ Itrw·nBffFin as witnessed by (H, F ). Define t, h such that for all
f computable functions: t(f) = μx F (f, 0x) = 0, h(f) = H(f, 0t(f)). Obviously
h fulfills the first requirement.
Let p be a polynomial upper-bounding the runtime of H and F . Let q0 = 0.
Define recursively for all i < n: qi+1 = 2p(g,qi) + qi. It is clear that rk(qi) = i.

We have now, for all f ∈ S and i < n, that the calculation of F on (f, 0qi(|f |))
is bounded above by p(|f |,qi(|f |)); therefore, F (f, 0qi

(|f |)) < 2p(|f |,q
i
(|f |)), and,

hence, by (2) from the very end of Section 3:

nS(F (f, 0qi(|f |))) <S 2p(|f |,qi(|f |)) = qi+1(|f |) − qi(|f |) . (3)

(3) is to be read as follows. After qi(|f |) iterations of F , F will output a no-
tation for an ordinal with natural-number part less then qi+1(|f |) − qi(|f |) –
therefore, after no more then qi+1(|f |) − qi(|f |) additional iterations (after a
total of qi+1(|f |) iterations), there has to be a limit ordinal jump in the output
of F . A simple induction shows now that we have, for all f ∈ S and i < n,
F (f, 0qi

(|f |)) <S w · n − i, and, therefore, F (f, 0qn
(|f |)) = 0 (this makes use of

assumption 13).
Let f ∈ S. The above shows that we have t(f) ≤ qn(|f |); therefore, an

algorithm for computing t could run F on all arguments (f, 0i) in increasing order
for all i ≤ qn(|f |), checking each output for equaling 0. This takes a total time
≤

∑qn(|f |)
i=0 p(|f |, i) ≤ (qn(|f |)+1)·p(|f |,qn(|f |)). Therefore, h can be computed

in ≤ (qn(|f |)+1) ·p(|f |,qn(|f |))+p(|f |,qn(|f |)) = (qn(|f |)+2) ·p(|f |,qn(|f |))
steps, where rk((qn + 2) · p(g,qn)) = rk(qn) = n. ��

Theorem 21 (Learning Time – Lower Bound). Let n > 0. Let S be as in
the proof of the limit ordinal jump hierarchy (Theorem 17) for the special case
of Itrw·(n−1)BffFin ⊂ Itrw·nBffFin. Define S′ := {f ∈ S | card({x > 0 | f(x) >

0}) = n + 1}. Let h be a computable functional such that ∀f ∈ S′ : ϕh(f) = f
and fix an OTM M computing h. Define q0 := g(1), define for all i < n, qi+1 :=
g(2ˆ(qi)). Then rk(qn) = n and we have, for all f ∈ S′, qn(|f |) is a lower bound
on the runtime of M on argument f .
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Proof. For f ∈ S we have by induction that | max({x > 0 | f(x) > 0})| ≥
qn(|f |), which shows by way of a simple adversary argument (as, for example,
in [DZ01]) the claim. ��

The following proposition illustrates one possibility to analyze a set in ItrvBffFin
(for any v ∈ S representing a limit ordinal) in terms of parametrized complexity
as in [DF98].

Proposition 22. Let v ∈ S be a notation for a limit ordinal, let S∗ ∈ ItrvBffFin
be as in the proof of Theorem 17. Define for all k ∈ N, S∗

k := {f ∈ S∗ | ∀x > 0 :
f(x) < k}. Then we have

(a)
⋃

k∈N
S∗

k = S∗,
(b) for all k ∈ N, S∗

k ∈ Itr0BffFin (that is, S∗
k is one-shot learnable by a basic

feasible functional) and
(c) there is a k0 such that for all k > k0, S∗

k is infinite.

Proofsketch. (a) is trivially true, as all f ∈ S∗ are finite variants of the constant
0 function.

(b) Let k ∈ N. Among the numbers < k there are of course at most k notations
for ordinals. Let f ∈ S∗

k . Let C := {x > 0 | f(x) �= 0} = {s(0) < s(1) < . . . <
s(m)}. We have now, for distinct x, y ∈ C, that f(x) �= f(y), as they have to be
notations for ordinals with different limit parts. Furthermore, as f ∈ S∗, for all
i < m, we have s(i + 1) < 2f(s(i)) + |f(0)| < 2k + |f(0)|. Now we have for all
x ≥ 2k + |f(0)|, f(x) = 0. Checking all other positions < 2k + |f(0)| and creating
an appropriate output with linear time s-m-n (as it was also done in the positive
part of the proof of Theorem 17) takes therefore O(|f |(0)) time.

(c) Let k0 := 3. We omit the remaining detailed verification. ��

6 Conclusions and Future Work

In this paper we showed one possible approach to putting feasibilty restrictions
on learning in the limit learning. However, our strict learning hierarchies are at
the price of some infeasibility. Furthermore, our particular scheme of feasibly
iterating basic feasible learning functionals requires the count down function to
bottom out at 0, so one can tell when the iterations are done (and can and do
suppress all the programs output but the last). We were initially surprised that,
for a scheme like ours, we get a learning hierarchy result as in our Theorem 17
(in Section 4 above). We are interested in the future investigation of more ways
for feasibly iterating feasible learning functionals. We’d like variant definitions
and results where one cannot suppress all the output programs but the last. It
seems this may be difficult if we retain strict determinism. In this interest, then,
we would also like to see studied probabilistic variants of feasibly iterated feasi-
ble learners – this toward producing practical generalizations of Valiant’s PAC
learning [KV94] and Reischuk and Zeugmann’s [RZ00] stochastically finite learn-
ing. These latter involve, probabilistic, one-shot learners. [RZ00], intriguingly for
our purposes, compiles the multiple trials of a special case of deterministic limit
learning into a feasible probabilistic one-shot variant.
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Abstract. Iterative learning (It-learning) is a Gold-style learning model
in which each of a learner’s output conjectures may depend only upon
the learner’s current conjecture and the current input element. Two ex-
tensions of the It-learning model are considered, each of which involves
parallelism. The first is to run, in parallel, distinct instantiations of a
single learner on each input element. The second is to run, in parallel,
n individual learners incorporating the first extension, and to allow the
n learners to communicate their results. In most contexts, parallelism is
only a means of improving efficiency. However, as shown herein, learn-
ers incorporating the first extension are more powerful than It-learners,
and, collective learners resulting from the second extension increase in
learning power as n increases. Attention is paid to how one would actu-
ally implement a learner incorporating each extension. Parallelism is the
underlying mechanism employed.

1 Introduction

Iterative learning (It-learning) [Wie76, LZ96, CJLZ99, CCJS06, CM07a] is a
mathematical model of language learning in the style of Gold [Gol67].1 In this
model, the learner (commonly denoted by M, for machine) is an algorithmic
device that is repeatedly fed elements from an infinite sequence. The elements
of the sequence consist of numbers and, possibly, pauses (#). The set of all such
numbers represents a language. After being fed each element, the learner either:
outputs a conjecture, or diverges.2 A conjecture may be either: a grammar , pos-
sibly for the language represented by the sequence, or ‘?’.3 Most importantly, the
learner may only consider its current conjecture and the current input element
when forming a new conjecture.

For the remainder of this section, let M be a fixed learner. For now, M may be
thought of as an It-learner. Later in this section, we will treat M as a instance of

1 In this paper, we focus exclusively on language learning, as opposed to, say, function
learning [JORS99].

2 Intuitively, if a learner M diverges, then M goes into an infinite loop.
3 N.B. Outputting ‘?’ is not the same as diverging. Outputting ‘?’ requires only finitely

many steps; whereas, diverging requires infinitely many steps.

M. Hutter, R.A. Servedio, and E. Takimoto (Eds.): ALT 2007, LNAI 4754, pp. 49–63, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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M0p0

x0

M1p1

x1

p2 Mj

xj

pj+1· · · pj

Fig. 1. The iterative learning process. The jth instantiation of learner M, Mj , is fed
the current conjecture pj and current input element xj . From these, Mj produces a
new conjecture pj+1.

a more general type of learner. Let x0, x1, ... be an arbitrary input sequence. Let
p0 be M’s initial conjecture (i.e., M’s conjecture having been fed no data), and,
for all j, let pj+1 be the result of Mj, where Mj is the computation performed by
running M on inputs pj and xj . In the event that Mj diverges, we let pj+1 = ⊥.
(By convention, p0 cannot be ⊥.) We shall refer to Mj as the jth instantiation
of M. See Figure 1.

An It-learner M is successful at learning the language represented by x0, x1,
... def⇔

– none of M0,M1, ... diverge (i.e., none of p1, p2, ... is ⊥);
– for some index j0, each of Mj0 ,Mj0+1, ... results in pj0+1; and ,
– pj0+1 correctly describes the language represented by x0, x1, ... .

We say that M identifies a language L, or, L is identifiable by M def⇔ M is
successful at learning L from any input sequence representing L.

The pattern languages are an example of a class of languages that are It-
learnable, i.e., there exists an It-learner capable of identifying every language
in the class. A pattern language is (by definition) the language generated by all
positive length substitution instances in a pattern (e.g., abXYcbbZXa, where the
variables/nonterminals are depicted in uppercase, and the constants/terminals
are depicted in lowercase). The pattern languages and their learnability were
first considered by Angluin [Ang80]. Since then, much work has been done on
the learnability of pattern languages [Sal94a, Sal94b, CJK+01] and finite unions
thereof [Shi83, Wri89, KMU95, BUV96]. The class of pattern languages, itself,
was shown to be It-learnable by Lange and Wiehagen [LW91]. Subsequently,
this result was extended by Case, et al. [CJLZ99] who showed that, for each
k, the class formed by taking the union of all choices of k pattern languages
is It-learnable. Nix [Nix83], as well as Shinohara and Arikawa [SA95], outline
interesting applications of pattern inference algorithms.

It-learning is a memory limited special case of the more general explanatory
learning (Ex-learning) [Gol67, JORS99]4 and behaviorally correct learning (Bc-
learning) [CL82, JORS99].5 Ex and Bc-learners are not , in general, limited

4 Ex-learning is the model that was actually studied by Gold [Gol67].
5 Other memory limited learning models are considered in [OSW86, FJO94, CJLZ99,

CCJS06].
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to just the current conjecture and current input element when forming a new
conjecture. Rather, such learners can refer to conjectures and/or input elements
arbitrarily far into the past.6

Many It-learnable classes of languages are of practical interest. For example,
the pattern languages, mentioned above, are a class whose learnability has ap-
plications to problems in molecular biology [AMS+93, SSS+94, SA95]. There is
benefit in knowing that a class of languages is It-learnable, in that It-learners
satisfy the following informal property.

Property 1. Each element of an input sequence may be discarded (and any as-
sociated resources freed) immediately after the element is fed to the learner.

Clearly, Ex and Bc-learners do not satisfy Property 1. In general, an imple-
mentation of an Ex or Bc-learner would have to store each element of an input
sequence indefinitely. Thus, from a practical perspective, showing a class of lan-
guages to be It-learnable is far more desirable than showing it to be merely Ex
or Bc-learnable.

Herein, we consider two extensions of the It-learning model, each of which
involves parallelism. The first is to run, in parallel, distinct instantiations of a
single learner on each input element (see Section 1.1 below). We call a learner
incorporating this extension a 1-ParIt-learner . Our second extension is to run,
in parallel, n distinct learners incorporating the first extension, and to allow
the n learners to communicate their results (see Section 1.2 below).7 We call a
collective learner resulting from this latter extension, an n-ParIt-learner .

Each extension is described in further detail below.

1.1 First Extension

As mentioned previously, for an It-learner M to be successful at learning a lan-
guage, none of its instantiations M0,M1, ... may diverge. Thus, a most obvious
implementation of M would run Mj only after Mj−1 has converged. We can put
each such Mj squarely into one of two categories: those that need pj to compute
pj+1, and those that do not . For those that do not , there is no reason to wait
until Mj−1 has converged, nor is there reason to require that Mj−1 converge at
all.

Thus, our first extension is to allow M0,M1, ... to run in parallel. We do not
require that each of M0,M1, ... converge, as is required by It-learning. However,
we do require that if Mj needs pj to compute pj+1, and , Mj−1 diverges, then
Mj also diverges. This is an informal way of saying that M must be mono-
tonic [Win93]. This issue is discussed further in Section 1.2.

We call a learner incorporating our first extension a 1-ParIt-learner . We say
that such a learner is successful at learning the language represented by x0, x1, ...
def⇔ for some index j0,
6 Bc-learners differ from Ex-learners in that, beyond some point, all of the conjectures

output by a Bc-learner must correctly (semantically) describe the input language,
but those conjectures need not be (syntactically) identical.

7 The reader should not confuse this idea with team learning [JORS99].
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Fig. 2. How a 1-ParIt-learner M may be implemented. Once Mj has converged (i.e.,
has resulted in something other than ⊥) (a), any previous instantiations of M that are
still running may be forcibly terminated (b).

– each of Mj0 ,Mj0+1, ... converges;
– each of Mj0 ,Mj0+1, ... results in pj0+1; and ,
– pj0+1 correctly describes the language represented by x0, x1, ... .

A 1-ParIt-learner may be implemented in the following manner. Successively,
for each j, start running Mj . Simultaneously, watch for each Mj that is currently
running to converge. Whenever j is such that Mj converges, forcibly terminate
any currently running instantiations of the form M0, ...,Mj−1. (The idea is that
once Mj has converged, the results of any previous instantiations of M are no
longer needed. See Figure 2.)

Clearly, a learner implemented in this way will not satisfy Property 1. How-
ever, if x0, x1, ... represents a language identifiable by M, then, for some index
j0, each of Mj0 ,Mj0+1, ... will converge. Thus, on such an input sequence, each
instantiation Mj will eventually either: converge or be forced to terminate. Once
either has occurred, the inputs of Mj may be discarded. As such, every 1-ParIt-
learner satisfies the following weakened version of Property 1.

Property 2. If an input sequence represents a language identifiable by the learner,
then each element of the sequence may be discarded eventually.

Clearly, Ex and Bc-learners do not satisfy even the weaker Property 2. Thus,
from a practical perspective, 1-ParIt-learners are more attractive than Ex or
Bc-learners.

Our first main result, Theorem 1 in Section 3, is that 1-ParIt-learners are
strictly more powerful than It-learners.

1.2 Second Extension

An obvious parallel generalization of the preceding ideas is to run, in parallel,
distinct, individual learners incorporating the first extension. Clearly, nothing is
gained if each such learner runs in isolation. But, if the learners are allowed to
communicate their results, then the resulting collective learner can actually be
more powerful than each of its individual learners.

For the remainder of this section, let n ≥ 1 be fixed, and let M0, ...,Mn−1 be
n learners incorporating the first extension. Let p0

i be Mi’s initial conjecture,
and, for each i < n, and each j, let pj+1

i be the result of Mj
i .
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Fig. 3. A collective learner resulting from our second extension. For each i < n, and
each j, individual learner Mi may consider conjectures pj

0, ..., p
j
n−1 and input element

xj when forming conjecture pj+1
i .

Our second extension is to allow M0, ...,Mn−1 to run in parallel. For each
i < n, and each j, we allow Mj

i to consider pj
0, ..., p

j
n−1 and xj when forming

conjecture pj+1
i (see Figure 3). However, as in the 1-ary case, we require that

each Mi be monotonic.8 So, if Mj
i needs pj

i′ to compute pj+1
i , and , Mj−1

i′ di-
verges, then Mj

i also diverges. The following examples give some intuition as to
which strategies Mj

i may employ, and which strategies Mj
i may not employ, in

considering pj
0, ..., p

j
n−1. Exactly which such strategies Mj

i may employ is made
formal by Definition 2 in Section 3.

Example 1. Mj
i may employ any of the following strategies in considering pj

0, ...,

pj
n−1.

(a) Mj
i does not wait for any of Mj−1

0 , ...,Mj−1
n−1 to converge; Mj

i uses just xj

to compute pj+1
i .

(b) Mj
i waits for Mj−1

i′ to converge. Then, Mj
i uses pj

i′ to compute pj+1
i .

(c) Mj
i waits for Mj−1

i′ to converge. Then, Mj
i performs some computable test

on pj
i′ , and, based on the outcome, either: uses just pj

i′ to compute pj+1
i ; or,

waits for Mj−1
i′′ to converge, and uses both pj

i′ and pj
i′′ to compute pj+1

i .
(d) Mj

i waits for each of Mj−1
0 , ...,Mj−1

n−1 to converge, in some predetermined
order. Then, Mj

i uses each of pj
0, ..., p

j
n−1 to compute pj+1

i .

Example 2. In general, Mj
i may not employ the following strategy in considering

pj
0, ..., p

j
n−1 when n ≥ 2.

(∗) Mj
i waits for any of Mj−1

0 , ...,Mj−1
n−1 to converge. Then, for that i′ < n such

that Mj−1
i′ converges first , Mj

i uses pj+1
i′ to compute pj+1

i .

Example 2 is revisited following Definition 2 in Section 3.
8 In this context, monotonicity is equivalent to continuity [Win93], since each Mj

i

operates on only finitely much data.
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Fig. 4. How an n-ParIt-learner M = (M0, ..., Mn−1) may be implemented. Once each
of Mj

0, ..., M
j
n−1 has converged (a), any previous instantiations of M0, ..., Mn−1 that

are still running may be forcibly terminated (b).

Let M = (M0, ...,Mn−1). We call such a collective learner M an n-ParIt-
learner . We say that such a learner is successful at learning the language repre-
sented by x0, x1, ... def⇔ for some index j0, and each i < n,

– each of Mj0
i ,Mj0+1

i , ... converges;
– each of Mj0

i ,Mj0+1
i , ... results in pj0+1

i ; and ,
– pj0+1

i correctly describes the language represented by x0, x1, ... .

A strategy for running instantiations of an n-ParIt-learner can easily be gen-
eralized from the 1-ary case. Instantiations may be terminated using the follow-
ing strategy. Whenever j is such that each of Mj

0, ...,M
j
n−1 converges, forcibly

terminate any currently running instantiations of the form M0
i , ...,M

j−1
i , where

i < n. (The idea is that once each of Mj
0, ...,M

j
n−1 has converged, the results of

any previous instantiations of M0, ...,Mn−1 are no longer needed. See Figure 4.)
Clearly, if x0, x1, ... represents a language identifiable by M, then, for all but

finitely many j, each of Mj
0, ...,M

j
n−1 will converge. It follows that an n-ParIt-

learner implemented as described in the just previous paragraph satisfies Prop-
erty 2. Thus, from a practical perspective, n-ParIt-learners are more attractive
than Ex or Bc-learners.

Our second main result, Theorem 2 in Section 3, is that, for all n ≥ 1,
(n + 1)-ParIt-learners are strictly more powerful than n-ParIt-learners.

1.3 Summary of Results

Our results are summarized by the following diagram, where the arrows represent
proper inclusions.

It −→ 1-ParIt −→ 2-ParIt −→ · · ·
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That is, 1-ParIt-learners are strictly more powerful than It-learners (Theo-
rem 1). Furthermore, for all n ≥ 1, (n + 1)-ParIt-learners are strictly more
powerful than n-ParIt-learners (Theorem 2). Thus, we think it fair to say: par-
allelism increases iterative learning power.

The remainder of this paper is organized as follows. Section 2 covers notation
and preliminaries. Section 3 gives the formal definition of n-ParIt-learning and
presents our results.

2 Notation and Preliminaries

Computability-theoretic concepts not explained below are treated in [Rog67].
N denotes the set of natural numbers, {0, 1, 2, . . .}. N?

def= N ∪ {?}. N?,⊥ def=
N?∪{⊥}. N#

def= N∪{#}. Lowercase Roman letters other than f , g, p, and q, with
or without decorations, range over elements of N. f and g will be used to denote
(possibly partial) functions of various types. The exact type of f and g will be
made clear whenever they are introduced. p and q, with or without decorations,
range over N?,⊥. p and q will be used to denote tuples whose elements are drawn
from N?,⊥. The size of p and q will be made clear whenever they are introduced.
For all n, all p ∈ N

n
?,⊥, and all i < n, (p)i denotes the ith element of p, where

the first element is considered the 0th. D0, D1, ... denotes a fixed, canonical
enumeration of all finite subsets of N such that D0 = ∅ [Rog67]. Uppercase
Roman letters, with or without decorations, range over all (finite and infinite)
subsets of N. L ranges over collections of subsets of N.

〈·, ·〉 : N × N → N denotes any fixed, 1-1, onto, computable function. In some
cases, we will write A × B for {〈a, b〉 : a ∈ A ∧ b ∈ B}.

For all p and q, p  q def⇔ [p = ⊥ ∨ p = q]. For all n, and all p, q ∈ N
n
?,⊥,

p  q def⇔ (∀i < n)[(p)i  (q)i]. For all n, and all p ∈ N
n
?,⊥, |p|�=⊥ def= |{i < n :

(p)i �= ⊥}|. So, for example, |(0, 1, ⊥, ⊥, ?)|�=⊥ = 3.
ϕ0, ϕ1, ... denotes any fixed, acceptable numbering of all partial computable

functions of type N ⇀ N [Rog67]. For each i, we will treat ϕi as a total function
of type N → N⊥, where ⊥ denotes the value of a divergent computation.9 For
all i, Wi

def= {x ∈ N : ϕi(x) �= ⊥}. Thus, for all i, Wi is the ith recursively
enumerable set [Rog67].

N
∗
# denotes the set of all finite initial segments of total functions of type

N → N#. N
≤ω
# denotes the set of all (finite and infinite) initial segments of total

functions of type N → N#. λ denotes the empty initial segment. ρ, σ, and τ ,
with or without decorations, range over elements of N

∗
#.

For all f ∈ N
≤ω
# , content(f) def= {y ∈ N : (∃x)[f(x) = y]}. For all f ∈ N

≤ω
# and

L, f represents L def⇔ f is total and content(f) = L.10 For all σ, |σ| denotes the
length of σ, i.e., the number of elements in σ. For all f ∈ N

≤ω
# , and all n, f [n]

denotes the initial segment of f of length n, if it exists; f , otherwise. For all σ,
all f ∈ N

≤ω
# , and all i,

9 N.B. It cannot , in general, be determined whether ϕi(x) = ⊥, for arbitrary i and x.
10 Such an f is often called a text (for L) [JORS99].
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(σ � f)(i) def=

{
σ(i), if i < |σ|;
f(i − |σ|), otherwise. (1)

M will be used to denote partial computable functions of type N
∗
# ⇀ N

n
? , for

various n. However, as with ϕ0, ϕ1, ..., we will treat each M as a total function
of type N

∗
# → N

n
?,⊥. The exact type of M will be made clear whenever it is

introduced. For all n, all M : N
∗
# → N

n
?,⊥, all i < n, and all ρ, Mi(ρ) def=

(
M(ρ)

)
i
.

The following is the formal definition of It-learning.11

Definition 1

(a) For all M : N
∗
# → N?,⊥ and L, M It-identifies L ⇔ (i) and (ii) below.

(i) For all f representing L, there exist j and p ∈ N such that (∀j′ ≥ j)[
M(f [j′]) = p

]
and Wp = L.12

(ii) For all ρ, σ, and τ such that content(ρ) ∪ content(σ) ∪ content(τ) ⊆ L,
(α) and (β) below.
(α) M(ρ) �= ⊥.
(β) M(ρ) = M(σ) ⇒ M(ρ � τ) = M(σ � τ).

(b) For all M : N
∗
# → N?,⊥, It(M) = {L : M It-identifies L}.

(c) It = {L : (∃M : N
∗
# → N?,⊥)[L ⊆ It(M)]}.

Some of our proofs make use of the Operator Recursion Theorem (ORT)
[Cas74]. ORT represents a form of infinitary self-reference, similar to the way in
which Kleene’s Recursion Theorem [Rog67, page 214, problem 11-4] represents
a form of individual self-reference. That is, ORT provides a means of forming
an infinite computable sequence of programs e0, e1, ... such that each program ei

knows all programs in the sequence and its own index i. The sequence can also
be assumed monotone increasing. The first author gives a thorough explanation
of ORT in [Cas94].

3 Results

This section gives the formal definition of n-ParIt-learning and presents our re-
sults. Namely, this section shows that 1-ParIt-learners are strictly more powerful
than It-learners (Theorem 1). It also shows that, for all n ≥ 1, (n + 1)-ParIt-
learners are strictly more powerful than n-ParIt-learners (Theorem 2).

Definition 2. For all n ≥ 1, (a)-(c) below.

(a) For all M : N
∗
# → N

n
?,⊥ and L, M n-ParIt-identifies L ⇔ (i) and (ii)

below.
(i) For all f representing L, there exist j and p ∈ N

n such that (∀j′ ≥ j)
[M(f [j′]) = p] and (∀i < n)[W(p)i

= L].

11 It-learners are often given a formal definition more in line with their description in
Section 1. The definition given herein was inspired, in part, by the Myhill-Nerode
Theorem [DSW94]. A proof that this definition is equivalent to the more common
definition can be found in [CM07b].

12 Condition (a)(i) in Definition 1 is equivalent to: M Ex-identifies L [Gol67, JORS99].
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(ii) (∀ρ, σ, τ)[M(ρ)  M(σ) ⇒ M(ρ � τ)  M(σ � τ)].
(b) For all M : N

∗
# → N

n
?,⊥, n-ParIt(M) = {L : M n-ParIt-identifies L}.

(c) n-ParIt = {L : (∃M : N
∗
# → N

n
?,⊥)[L ⊆ n-ParIt(M)]}.

Example 3 (Example 2 revisited). Suppose that M : N
∗
# → N

2
?,⊥, ρ, σ, p ∈ N

2
?,⊥,

and x are such that (a)-(e) below.

(a) M(ρ) = M(σ) = p.
(b) |p|�=⊥ = 2.
(c) (p)0 �= (p)1.
(d) In the computation of M0(ρ � x), M0 waits for either of M0(ρ) or M1(ρ) to

converge. Then, for the i ≤ 1 such that Mi(ρ) converges first , M0(ρ � x) =
Mi(ρ). Similarly, in the computation of M0(σ � x), M0 waits for either of
M0(σ) or M1(σ) to converge. Then, for the i ≤ 1 such that Mi(σ) converges
first , M0(σ � x) = Mi(σ).

(e) In the computation of M(ρ), M0(ρ) converges before M1(ρ); in computation
of M(σ), M1(σ) converges before M0(σ).

Then, for all L, M does not 2-ParIt-identify L, i.e., M is not a 2-ParIt-learner.

Proof. By (a) above, M(ρ)  M(σ). By (c)-(e) above, M0(ρ � x) = (p)0 �=
(p)1 = M0(σ �x). Thus, by (b) above, M(ρ�x) � M(σ �x). But this contradicts
condition (a)(ii) in Definition 2. � (Example 3 )

Intuitively, the M described in Example 3 violates Definition 2 because: (1)
M makes use of, not just the value of a conjecture, but also the time used to
compute it; and, (2) the elements of N?,⊥ do not capture this information. To
overcome this difficulty would require that a learner be defined as object with a
more complex range than N

n
?,⊥. It would be interesting to explore generalizations

of Definition 2 that do this.
The following straightforward variant of It-learning is used in the proof of

Theorem 1.

Definition 3

(a) For all M : N
∗
# → N?,⊥ and L, M TotIt-identifies L ⇔ M It-identifies L,

and , for all ρ, M(ρ) �= ⊥.
(b) For all M : N

∗
# → N?,⊥, TotIt(M) = {L : M TotIt-identifies L}.

(c) TotIt = {L : (∃M : N
∗
# → N?,⊥)[L ⊆ TotIt(M)]}.

Recall that if a learner M It-identifies language L, then it is only required that
M(ρ) �= ⊥ for those ρ such that content(ρ) ⊆ L. However, if M TotIt-identifies
L, then, for all ρ, M(ρ) �= ⊥.

The following is a basic fact relating It and TotIt.

Proposition 1. For all L ∈ It, if N ∈ L, then L ∈ TotIt.

Proof. Straightforward. � (Proposition 1 )

The following lemma is used in the proof of Theorem 1.
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Lemma 1. Let L be the class of languages consisting of each L satisfying (a)-(c)
below.

(a) (∀e ∈ L)[ϕe(0) �= ⊥].
(b) {ϕe(0) : e ∈ L} is finite.
(c) L =

⋃
e ∈ L Wϕe(0).

Then, L ∈ It − TotIt.

Proof that L ∈ It. Let f : N → N be a 1-1, computable function such that, for
all a,

Wf(a) =
⋃

e ∈ Da

We. (2)

Let M : N
∗
# → N?,⊥ be such that M(λ) = f(0), and, for all ρ, a, and e, if

M(ρ) = f(a), then

M(ρ � e) =

⎧
⎪⎪⎨
⎪⎪⎩

f(a), if ϕe(0) ∈ Da;
f(b), if ϕe(0) ∈ (N − Da),

where b is such that Db = Da ∪ {ϕe(0)};
⊥, if ϕe(0) = ⊥.

(3)

Clearly, L ⊆ It(M).

Proof that L �∈ TotIt. By way of contradiction, suppose that M : N
∗
# → N?,⊥

is such that L ⊆ TotIt(M). By ORT, there exist distinct ϕ-programs e0, e1, ...
such that, for all i and x,

We0 = {ej+2 : ϕej+2 (0) = e0}; (4)
We1 = {ej+2 : ϕej+2 (0) = e1}; (5)

ϕei+2(x) =

⎧⎨
⎩

e1, if i is least such that
M(e2 � · · · � ei+2) = M(e2 � · · · � ei+1);

e0, otherwise.
(6)

Consider the following cases.

Case (∀i)[ϕei+2(0) = e0]. Then, clearly, We0 = {ej+2 : j ∈ N} and We0 ∈ L.
By the case, for all i, M(e2 �· · ·�ei+2) �= M(e2 �· · ·�ei+1). But then, clearly,
We0 �∈ It(M).
Case (∃i)[ϕei+2 (0) = e1]. Then, clearly, We0 = {ej+2 : j �= i} and (∀j �= i)
[ϕej+2 (0) = e0]. Furthermore, We1 = {ei+2} and ϕei+2(0) = e1. Thus, We0 ∪
We1 and We0 are distinct languages in L. Let f and f− be as follows.

f = e2 � e3 � · · · . (7)
f− = e2 � e3 � · · · � ei+1 � ei+3 � ei+4 � · · · . (8)

Clearly, f represents We0 ∪ We1 , and f− represents We0 . Let k be such that
M(f [k]) ∈ N, M(f−[k]) ∈ N, and

(∀k′ ≥ k)
[
M(f [k′]) = M(f [k]) ∧ M(f−[k′]) = M(f−[k])

]
. (9)

From the case, it follows that M(f [k]) = M(f−[k]). But, clearly, this is a
contradiction. � (Lemma 1 )
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Theorem 1. Let L be as in Lemma 1. Let L′ be such that L′ = L∪{N}. Then,
L′ ∈ 1-ParIt − It.

Proof (Sketch) that L′ ∈ 1-ParIt. By Lemma 1, there exists M : N
∗
# → N?,⊥

such that L ⊆ It(M). Let z0 be such that ϕz0(0) = ⊥. Clearly, for all L ∈ L,
z0 �∈ L. Consider an M′ : N

∗
# → N?,⊥ described informally as follows. On any

given input sequence, M′ simulates M until, if ever, M′ is fed z0. Upon being
fed z0, M′ stops simulating M, and starts outputting a conjecture for N. Clearly,
for such an M′, L′ ⊆ 1-ParIt(M′).

Proof that L′ �∈ It. By way of contradiction, suppose that L′ ∈ It. Then, by
Proposition 1, L′ ∈ TotIt. Let M : N

∗
# → N?,⊥ be such that L′ ⊆ TotIt(M).

Then, L ⊂ L′ ⊆ TotIt(M). But this contradicts Lemma 1. ≈ � (Theorem 1 )

Theorem 2. Let n ≥ 1 be fixed. For each i < n, let zi be any fixed ϕ-program
such that Wϕzi

(0) = {〈i, zi〉}. Let Ln be the class of languages consisting of each
L ⊆ {0, ..., n − 1} × N satisfying either (a) or (b) below.

(a) (i) and (ii) below.
(i) L ∩ ({0, ..., n − 1} × {z0, ..., zn−1}) = ∅.
(ii) For each i < n, if E is such that E = {e ∈ N : 〈i, e〉 ∈ L}, then (α)-(γ)

below.
(α) (∀e ∈ E)[ϕe(0) ∈ N].
(β) {ϕe(0) : e ∈ E} is finite.
(γ) L =

⋃
e ∈ E Wϕe(0).

(b) There exists i < n such that (i) and (ii) below.
(i) L ∩ ({0, ..., n − 1} × {z0, ..., zn−1}) = {〈i, zi〉}.
(ii) If E is such that E = {e ∈ N : 〈i, e〉 ∈ L}, then (α)-(γ) as in (a)(ii)

above for this E.

Then, for all n ≥ 1, Ln+1 ∈ (n + 1)-ParIt − n-ParIt.

Proof (Sketch) that Ln+1 ∈ (n + 1)-ParIt. Let n ≥ 1 be fixed. Let f : N
2 → N

be a 1-1, computable function such that, for all j and a,

Wf(j,a) =
⋃

e ∈ Da

We. (10)

Let M : N
∗
# → N

n+1
?,⊥ be such that, for each i ≤ n, Mi(λ) = f(i, 0), and, for all

ρ, k, and e, Mi(ρ � 〈k, e〉) is
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mk(ρ), if e = zk;
Mj(ρ), if e �= zk ∧ [j �= i ∨ k �= i ∨ ϕe(0) ∈ Da],

where j and a are such that Mi(ρ) = f(j, a);
f(i, b), if e �= zk ∧ j = i ∧ k = i ∧ ϕe(0) ∈ (N − Da),

where j, a, and b are such that Mi(ρ) = f(j, a)
and Db = Da ∪ {ϕe(0)};

⊥, if e �= zk ∧
[
[j = i ∧ k = i ∧ ϕe(0) = ⊥] ∨ Mi(ρ) = ⊥

]
,

where j is such that Mi(ρ) = f(j, a), for some a.

(11)
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Stage s = 0.

1. For each i ≤ n, set ϕei+1(0) = e0.
2. Set W 1

e0 = {〈0, e1〉, ..., 〈n, en+1〉}.
3. Set ρ1 = 〈0, e1〉 � · · · � 〈n, en+1〉.

Stage s ≥ 1.

1. Find ρ′, if any , such that ρs ⊆ ρ′ ⊂ ρs � #ω and |M(ρ′)|�=⊥ = n.
2. For k from n down through −1, do:
Wait until, if ever , it is discovered that one of the following two conditions applies.
Cond. (α): (∃q : |q|�=⊥ = n − k)(∀σ ∈ {〈0, ef(s)〉 � · · · � 〈k, ef(s)+k〉, λ})

[q  M(ρ′ � σ � 〈k + 1, ef(s)+k+1〉 � · · · � 〈n, ef(s)+n〉)].
a. Set ϕef(s)+k

(0) = any ϕ-program p such that Wp = {〈k, ef(s)+k〉}.
b. Proceed to the next value of k.

Cond. (β): M(ρ′ � 〈0, ef(s)〉 � · · · � 〈k, ef(s)+k〉) � M(ρ′).
a. For each i ≤ k, set ϕef(s)+i

(0) = e0.

b. Set W s+1
e0 = W s

e0 ∪ {〈0, ef(s)〉, ..., 〈k, ef(s)+k〉}.
c. Set ρs+1 = ρ′ � 〈0, ef(s)〉 � · · · � 〈k, ef(s)+k〉.
d. Go to stage s + 1.

(Note that the iteration of the loop in which k = n is always exited. Also, note
that if k reaches the value −1, then the construction intentionally goes into an
infinite loop.)

Fig. 5. The behavior of ϕ-programs e0, e1, ... in the proof of Theorem 2

It can be shown that Ln+1 ⊆ (n + 1)-ParIt(M) (details omitted).

Proof that Ln+1 �∈ n-ParIt. By way of contradiction, suppose that n ≥ 1 and
M : N

∗
# → N

n
?,⊥ are such that Ln+1 ⊆ n-ParIt(M). Let f : N → N be such

that, for all s,
f(s) = s · (n + 1) + 1. (12)

By ORT, there exist distinct ϕ-programs e0, e1, ..., none of which are z0, ..., zn,
and whose behavior is as in Figure 5.

Claim 1. For all s ≥ 1, if stage s is entered, then (a)-(c) below.
(a) (∀〈i, e〉 ∈ W s

e0
)[i ≤ n ∧ e �∈ {z0, ..., zn} ∧ ϕe(0) = e0].

(b) content(ρs) = W s
e0

.
(c) ρs � #ω represents W s

e0
.

Proof of Claim. (a) is clear by construction. (b) is proven by a straightforward
induction. (c) follows immediately from (b). � (Claim 1 )

Claim 2. For all s ≥ 1, if stage s is exited, then there exist ρ′ and ρ′′ such that
ρs ⊆ ρ′ ⊂ ρ′′ ⊆ ρs+1 and M(ρ′′) � M(ρ′).

Proof of Claim. Clear by construction. � (Claim 2 )
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If every stage s is exited, then, by Claim 1(a) and Claim 2, We0 ∈ Ln+1 −
n-ParIt(M) (a contradiction). So, for the remainder of the proof, suppose that
stage s is entered but never exited.

If stage s is never exited because there is no ρ′ such that ρs ⊆ ρ′ ⊂ ρs � #ω

and |M(ρ′)|�=⊥ = n, then, by (a) and (c) of Claim 1, W s
e0

∈ Ln+1 −n-ParIt(M)
(a contradiction). So, suppose that stage s is never exited because there exists
k such that −1 ≤ k < n and (¬α) and (¬β) below.

(¬α) (∀q : |q|�=⊥ = n − k)(∃σ ∈ {〈0, ef(s)〉 � · · · � 〈k, ef(s)+k〉, λ})
[q � M(ρ′ � σ � 〈k + 1, ef(s)+k+1〉 � · · · � 〈n, ef(s)+n〉)].

(¬β) M(ρ′ � 〈0, ef(s)〉 � · · · � 〈k, ef(s)+k〉)  M(ρ′).

Claim 3.
M(ρ′ � 〈0, ef(s)〉� · · ·� 〈n, ef(s)+n〉)  M(ρ′ � 〈k+1, ef(s)+k+1〉� · · ·� 〈n, ef(s)+n〉).
Proof of Claim. Follows from (¬β). � (Claim 3 )

By the choice of k, there exists p such that |p|�=⊥ = n − k − 1 and

(∀σ ∈ {〈0, ef(s)〉 � · · · � 〈k + 1, ef(s)+k+1〉, λ})
[p  M(ρ′ � σ � 〈k + 2, ef(s)+k+2〉 � · · · � 〈n, ef(s)+n〉)].

(13)

Claim 4. p = M(ρ′ � 〈0, ef(s)〉 � · · · � 〈n, ef(s)+n〉).
Proof of Claim. By way of contradiction, suppose otherwise. By (13), it must be
the case that

p � M(ρ′ � 〈0, ef(s)〉 � · · · � 〈n, ef(s)+n〉). (14)

But (14) together with Claim 3 contradicts (¬α). � (Claim 4 )

Claim 5.
M(ρ′ � 〈0, ef(s)〉� · · ·� 〈n, ef(s)+n〉)  M(ρ′ � 〈k+2, ef(s)+k+2〉� · · ·� 〈n, ef(s)+n〉).
Proof of Claim. Immediate by Claim 4 and (13). � (Claim 5 )

Let p = ϕef(s)+k+1 (0). Thus, by construction, Wp = {〈k + 1, ef(s)+k+1〉}. Let
e′ �∈ {z0, ..., zn, e0, e1, ...} and p′ be as follows.

ϕe′ (0) = p′. (15)

Wp′ = { 〈k + 2, ef(s)+k+2〉, ..., 〈n, ef(s)+n〉,
〈0, ef(s)〉, ..., 〈k, ef(s)+k〉, 〈k + 1, e′〉 }.

(16)

Let L and L− be as follows.

L = W s
e0

∪ Wp ∪ Wp′ ∪ {〈k + 1, zk+1〉}. (17)
L− = W s

e0
∪ Wp′ ∪ {〈k + 1, zk+1〉}. (18)

Clearly, L and L− are distinct languages in Ln+1. Let g and g− be as follows.

g = ρ′ � 〈0, ef(s)〉 � · · · � 〈n, ef(s)+n〉
� 〈0, ef(s)〉 � · · · � 〈k, ef(s)+k〉 � 〈k + 1, e′〉 � 〈k + 1, zk+1〉 � #ω.

(19)

g− = ρ′ � 〈k + 2, ef(s)+k+2〉 � · · · � 〈n, ef(s)+n〉
� 〈0, ef(s)〉 � · · · � 〈k, ef(s)+k〉 � 〈k + 1, e′〉 � 〈k + 1, zk+1〉 � #ω.

(20)
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Clearly, g represents L, and g− represents L−. Let � be such that M(g[�]) ∈ N
n,

M(g−[�]) ∈ N
n, and

(∀�′ ≥ �)
[
M(g[�′]) = M(g[�]) ∧ M(g−[�′]) = M(g−[�])

]
. (21)

From Claim 5, and the fact that M(g[�]) ∈ N
n and M(g−[�]) ∈ N

n, it follows
that M(g[�]) = M(g−[�]). But, clearly, this is a contradiction. ≈ � (Theorem 2 )
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Abstract. This work extends studies of Angluin, Lange and Zeugmann
on the dependence of learning on the hypotheses space chosen for the
class. In subsequent investigations, uniformly recursively enumerable hy-
potheses spaces have been considered. In the present work, the follow-
ing four types of learning are distinguished: class-comprising (where the
learner can choose a uniformly recursively enumerable superclass as hy-
potheses space), class-preserving (where the learner has to choose a uni-
formly recursively enumerable hypotheses space of the same class), pre-
scribed (where there must be a learner for every uniformly recursively
enumerable hypotheses space of the same class) and uniform (like pre-
scribed, but the learner has to be synthesized effectively from an in-
dex of the hypothesis space). While for explanatory learning, these four
types of learnability coincide, some or all are different for other learning
criteria. For example, for conservative learning, all four types are differ-
ent. Several results are obtained for vacillatory and behaviourally correct
learning; three of the four types can be separated, however the relation
between prescribed and uniform learning remains open. It is also shown
that every (not necessarily uniformly recursively enumerable) behaviour-
ally correct learnable class has a prudent learner, that is, a learner using
a hypotheses space such that it learns every set in the hypotheses space.
Moreover the prudent learner can be effectively built from any learner
for the class.

1 Introduction

The intuition behind learning in inductive inference [10] is that a learner sees
more and more data and while reading the data produces conjectures about the
concept to be learned which eventually stabilize on a correct description. The
learning task is not arbitrary, but stems from a given class of concepts. Angluin
[1] considered the important case that such a class is given by an indexed family,
that is, the class is uniformly recursive. She has given a characterization when
such a class is explanatorily learnable and introduced also important variants
such as conservative learning. In the present work, the more general case of
� Supported in part by NUS grant number R252-000-212-112 and 251RES070107.
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uniformly r.e. classes is addressed. Previously learnability of uniformly r.e. classes
had been considered by de Jongh, Kanazawa [7] and Zilles [26,27].

Remark 1. First some basic notation. Let W0, W1, W2, . . . be an acceptable
enumeration of all r.e. subsets of the set of natural numbers N. A language is a
r.e. subset of natural numbers. Let ϕe denote the e-th partial recursive function,
again from an acceptable numbering. For more information on recursion theory,
the reader is referred to standard text books like the ones of Odifreddi [18]
and Soare [21]. The function 〈e, x〉 = 1

2 · (e + x)(e + x + 1) + x is Cantor’s
pairing function. A family L0, L1, L2, . . . is uniformly recursively enumerable iff
{〈e, x〉 : x ∈ Le} is a recursively enumerable set. For ease of notation, uniformly
r.e. classes are just called r.e. classes. Note that in this paper, notations like {L0,
L1, L2, . . .} are used as a short-hand for both, the family as well as for the class
of the sets; so set-theoretic comparisons like {L0, L1, L2, . . .} ⊆ {H0, H1, H2, . . .}
and {L0, L1, L2, . . .} = {H0, H1, H2, . . .} ignore the ordering of the sets inside
the class. Furthermore, let We,s, Le,s, He,s be the elements enumerated within
time s into We, Le, He, respectively. Without loss of generality, We,s, Le,s, He,s

are subsets of {0, 1, . . . , s}.
Let σ, τ range over (N ∪ {#})∗. Furthermore, let σ ⊆ τ denote that τ is an

extension of σ as a string. content(σ) denotes the set of natural numbers in the
range of σ. T is a text if T maps N to N ∪ {#} and T is a text for La iff the
numbers occurring in T are exactly those in La. content(T ) denotes the set of
natural numbers in the range of T . T [n] denotes the string consisting of the first
n elements of the text T , so T [0] is the empty string and T [2] = T (0)T (1).

Remark 2. A learner is a recursive function from (N∪{#})∗ to N∪{?}. In the
following, let M be a learner and let {L0, L1, L2, . . .}, {H0, H1, H2, . . .} be r.e.
classes. Here {L0, L1, L2, . . .} is the class M should learn and {H0, H1, H2, . . .}
is the hypotheses space used by M .

The learner M converges on T to b if there is an n with M(T [m]) = b for all
m ≥ n.

The learner M is finite [10] if for every text T there is one index e such that
for all n, either M(T [n]) =? or M(T [n]) = e.

The learner M is confident [19] if M converges on every text T to a hypothesis.
The learner M is conservative [1] if for all σ, τ with M(στ) �= M(σ) there is

an x occurring in στ such that x /∈ HM(σ).
The learner M semantically identifies La if, given any text T for L, HM(T [n])

= La for almost all n. The learner M syntactically identifies La if, given any
text T for L, there is a b with Hb = La and M(T [n]) = b for almost all n.

The learner M is a behaviourally correct learner for {L0, L1, L2, . . .} iff M
semantically identifies every La [3,6]; M is an explanatory learner for {L0, L1,
L2, . . .} if M syntactically identifies every La [4,10]. M is a vacillatory learner
for {L0, L1, L2, . . .} iff M is a behaviourally correct learner for {L0, L1, L2, . . .}
which on every text for a language La outputs only finitely many syntactically
different hypotheses [5].

The learner M is prudent [9,19] if it learns all languages in its hypotheses
space {H0, H1, H2, . . .}.
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In the first three sections, all classes considered are recursively enumerable, only
in Section 4 learnability of general classes is investigated.

Remark 3. Let M be a learner for {L0, L1, L2, . . .} using hypotheses space {H0,
H1, H2, . . .}. A sequence σ is called syntactic stabilizing sequence for M on a set
L iff σ ∈ (L ∪ {#})∗ and for all τ ∈ (L ∪ {#})∗, M(στ) = M(σ). A sequence
σ is called semantic stabilizing sequence for M on a set L iff σ ∈ (L ∪ {#})∗

and for all τ ∈ (L ∪ {#})∗, HM(στ) = HM(σ). Stabilizing sequences are called
locking sequences for M on L, if in addition to the above conditions it holds that
HM(σ) = L. Note that, if M learns L then stabilizing sequences for M on L are
also locking sequences for M on L.

Let K denote the halting problem. There is a partial K-recursive function
Γ which assigns to each e the length-lexicographically least syntactic stabilizing
sequence for M on Le; Γ (e) is defined iff such a sequence exists. Γ has a two-place
approximation γ(e, t) which converges to Γ (e) if Γ (e) is defined and diverges
otherwise. Note that Γ and γ can be obtained effectively from an index for M
and an index e′ with We′ = {〈e, x〉 : x ∈ Le}. Blum and Blum [4] introduced
the notion of locking sequences and Fulk [9] introduced the notion of stabilizing
sequences.

Angluin [1], Lange, Kapur and Zeugmann [15,16,23,24,25] studied the depen-
dence between the family {L0, L1, L2, . . .} to be learned and the hypotheses
space {H0, H1, H2, . . .} used by the learner. To formalize this, they introduced
the notions of exact, class-preserving and class-comprising learning. In addition
to this, new notions like uniform and prescribed are introduced. Here I ranges
over properties of the learner as defined in Remark 2, so I stands for “finite”,
“explanatory”, “conservatively explanatory”, “confidently explanatory”, “vacil-
latory” and “behaviourally correct”.

Definition 4. {L0, L1, L2, . . .} is class-comprisingly I learnable iff it is I learn-
able with respect to some hypotheses space {H0, H1, H2, . . .}; note that learn-
ability automatically implies {L0, L1, L2, . . .} ⊆ {H0, H1, H2, . . .}.

{L0, L1, L2, . . .} is class-preservingly I learnable iff it is I learnable with re-
spect to some hypotheses space {H0, H1, H2, . . .} satisfying {H0, H1, H2, . . .} =
{L0, L1, L2, . . .}.

{L0, L1, L2, . . .} is prescribed I learnable iff it is I learnable with respect to
every hypotheses space {H0, H1, H2, . . .} such that {L0, L1, L2, . . .} = {H0, H1,
H2, . . .}.

{L0, L1, L2, . . .} is uniformly I learnable iff there is a recursive enumeration of
partial-recursive functions M0, M1, M2, . . . such that the following holds: When-
ever {H0, H1, H2, . . .} = {L0, L1, L2, . . .} and We = {〈d, x〉 : x ∈ Hd} then Me is
total and an I learner for {L0, L1, L2, . . .} with respect to this hypotheses space
{H0, H1, H2, . . .}.

Remark 5. Lange and Zeugmann [15,23] considered besides class-preserving
and class-comprising also the following notion: {L0, L1, L2, . . .} is exactly I
learnable iff it is I learnable with {L0, L1, L2, . . .} itself taken as hypotheses
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space. Note that this notion needs that the ordering of the languages in {L0,
L1, L2, . . .} is taken into account, while all other definitions hold without pay-
ing attention to the specific ordering of the sets inside {L0, L1, L2, . . .}. The
relation to prescribed learning is that a class {L0, L1, L2, . . .} is prescribed I
learnable iff every family {H0, H1, H2, . . .} with {H0, H1, H2, . . .} = {L0, L1,
L2, . . .} is exactly I learnable.

The question whether a class can be learned using any given representation
is quite natural. It reflects the situation where a company building learners
cannot enforce its representation of the data/hypothesis on the clients but has
to make for each client a learning algorithm using the client’s representation. The
difference between prescribed and uniform learning would then be that in the
first case the programmers have to adjust for each client the learning program by
hand, while in the second case there is some synthesizer which reads the clients
requirements from some file and then adapts the learner automatically.

Remark 6. Note that in the case of learning with respect to r.e. families, uni-
form learning and prescribed learning are defined in a class-preserving way. Jain
and Stephan [13] showed that there is a one-one numbering of all r.e. sets (that
is a Friedberg Numbering [8]) such that only classes with finitely many infi-
nite sets can be behaviourally correct learned with respect to this numbering as
hypotheses space.

Furthermore, above result can be strengthened to uniform learning by show-
ing that only classes consisting of finite sets are class-comprising-uniformly be-
haviourally correct learnable. To see this, let {H0, H1, H2, . . .} be a Friedberg
numbering [8]. For a given parameter e, a family {G0, G1, G2, . . .} is constructed
from {H0, H1, H2, . . .} such that the following holds for all a:

– For all b, G〈a,b〉 ⊆ Ha;
– G〈a,b〉 = Ha if either b = 0 ∧ |We| = ∞ or b = |We| + 1;
– G〈a,b〉 is finite if either b > 0 ∧ |We| = ∞ or b �= |We| + 1 ∧ |We| < ∞.

Suppose by way of contradiction that there is an r.e. infinite set Ha such that
some class containing Ha can be class-comprising-uniformly behaviourally cor-
rectly learned. Note that for any fixed e and the class {G0, G1, G2, . . .} with
parameter e built as above, there exists exactly one index 〈f(e), g(e)〉 with
G〈f(e),g(e)〉 = Ha. By construction, f(e) = a. By the assumption on uniform
learnability, there is a recursive enumeration of learners N0, N1, N2, . . . such
that each Ne learns the given class with respect to the hypotheses space {G0,
G1, G2, . . .} built with parameter e. As there is a fixed recursive text T for Ha

and one can simulate Ne on T , the function g is limit-recursive (that is, there
exists a recursive function h such that g(x) = limt→∞ h(x, t)). Note that We

is infinite iff g(e) = 0. As {e : |We| = ∞} �≤T K, this gives a contradiction.
So class-comprising uniform behaviourally correct learning only permits to learn
classes of finite sets.

Thus it is reasonable to restrict oneself to the class-preserving versions of
prescribed and uniform learning; this convention has already been adapted in
Definition 4.
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The next result is obvious from the definitions.

Proposition 7. For any notion I of learning and any class L, the following
implications hold: L is uniformly I-learnable ⇒ {L0, L1, L2, . . .} is prescribed
I-learnable ⇒ L is class-preservingly I-learnable ⇒ L is class-comprisingly I-
learnable.

It depends on the chosen learning criterion I, which of the implications can be
reversed. For finite and explanatory learning, all four notions are the same, as
shown in Theorems 8 and 9. A lot of research [11] deals with requiring addi-
tional constraints on how hypotheses are chosen during explanatory learning.
Such requirements change also the relations between the four types of learn-
ing. For confident learning, Theorem 10 shows that the uniform, prescribed and
class-preserving type coincide while class-comprising confident learning is more
general. For conservative learning, Example 11 gives classes which separate all
four types of conservative learning. Theorems 12, 13, 15 and 16 deal with vac-
illatory and behaviourally correct learning. They give classes which, for these
criteria, are class-comprisingly but not class-preservingly learnable as well as
classes which are class-preservingly but not prescribed learnable. The separa-
tion of prescribed from uniform is open for these two criteria.

The importance of prudence is that the hypotheses space and the class of
learned sets coincide; so the learner never conjectures some set it cannot learn.
Fulk [9] showed that prudence is not restrictive for explanatory learning. Jain
and Sharma [12] showed that prudence is not restrictive for vacillatory learning.
In Theorem 17 it is shown that prudence is not restrictive for behaviourally
correct learning. The prudent behaviourally correct learner can be constructed
effectively from the original learner; it is still open whether prudence for explana-
tory and vacillatory learning can be effectivized. Note that Kurtz and Royer [14]
had claimed to have this result but their proof had a bug and the problem had
remained open since then.

2 Finite and Explanatory Learning

Finite learnable classes can be learnt uniformly, because finite learning is deter-
mined by a finite subset of the target language.

Theorem 8. Every class-comprisingly finitely learnable class is also uniformly
finitely learnable.

Proof. Let M be a finite learner for {L0, L1, L2, . . .} using a class-comprising
hypotheses space. Let e be an index for a hypothesis space {H0, H1, H2, . . .}.
That is, We = {〈b, x〉 : x ∈ Hb}. Further suppose {H0, H1, H2, . . .} = {L0, L1,
L2, . . .}. Then a learner Me is defined as follows. Me(T [n]) is defined by the first
case below which applies:

– If there is an m < n with Me(T [m]) �=? then Me(T [n]) = Me(T [m]) for the
least such m;
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– If there are m ≤ n and b ≤ n with M(T [m]) �=? and content(T [m]) ⊆ Hb,n

then Me(T [n]) = b;
– Otherwise Me(T [n]) =?.

The first condition guarantees that Me outputs on T at most one hypothesis be-
sides the symbol ?. Hence every Me is a finite learner. It follows from the defini-
tion of finite learning that Hb = Hc whenever M(T [m]) �= ?, content(T [m]) ⊆ Hb

and content(T [m]) ⊆ Hc. Hence the b chosen in the second case is a correct hy-
pothesis whenever this case applies. Furthermore, this case eventually applies on
texts for languages in {L0, L1, L2, . . .}. This completes the proof that {L0, L1,
L2, . . .} is uniformly finitely learnable. �
The same result holds for explanatory learning.

Theorem 9. Every class-comprisingly explanatorily learnable class is also uni-
formly explanatorily learnable.

Proof. Let L be given and let M be a learner using a hypotheses space {L0,
L1, L2, . . .} containing L and perhaps other languages. Choose i such that Wi =
{〈a, x〉 : x ∈ La}.

Fix any j and assume that j is an index of a hypotheses space {H0, H1,
H2, . . .} for L, that is, assume {H0, H1, H2, . . .} = L and Wj = {〈b, x〉 : x ∈ Hb}.
Let Γj be the function from Remark 3 which assigns to the members of {H0, H1,
H2, . . .} the length-lexicographically least syntactic stabilizing sequences with
respect to the learner M . γj(b, t) is then the t-th approximation of Γj(b) as
defined in Remark 3.

The learner Mj is constructed as follows: Mj(σ) is the least b such that either
γi(M(σ), |σ|) = γj(b, |σ|) or b = |σ|. The latter condition is just to make Mj

total and to terminate the search.
Assume that M converges on some text T to an index a of a language La ∈ L.

As La ∈ L, there is a b with Hb = La; assume that b is the least such index.
As {H0, H1, H2, . . .} = L and M is a learner for {H0, H1, H2, . . .}, an index c
satisfies Γj(c) = Γi(a) iff Hc = La. Hence Mj converges on T to b as, for all
c < b and almost all s, γj(b, s) = γi(a, s) and γj(c, s) �= γi(a, s). It follows that
Mj learns L using the hypotheses space {H0, H1, H2, . . .}. �
The next result shows that class-preserving confident learning coincides with uni-
form confident learning. The proof of the second part shows that class-preserving
confident learning is not closed under taking subclasses.

Theorem 10. (a) Every class-preservingly confidently learnable class L is also
uniformly confidently learnable.

(b) The class {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)} is class-comprisingly but
not class-preservingly confidently learnable.

Proof. (a) Reviewing the proof of Theorem 9, the additional constraints to
those given there on M and {L0, L1, L2, . . .} are that {L0, L1, L2, . . .} = L and
M converges on every text to some index. Assume again that j and {H0, H1,
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H2, . . .} satisfy {L0, L1, L2, . . .} = {H0, H1, H2, . . .} and Wj = {〈b, x〉 : x ∈ Hb}.
Assume that T is any text. Then M converges on T to some index a as M is
confident. By construction, Mj converges then to the least index b with La = Hb.
Hence Mj also converges on all texts and hence Mj is confident. Furthermore, Mj

learns L explanatorily with respect to the hypotheses space {H0, H1, H2, . . .}.
(b) The class {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)} is class-comprisingly

confidently learnable as follows. On a text for a set with up to two elements, the
learner converges to an index for this set using {W0, W1, W2, . . .} as hypotheses
space. The learner does not revise its hypothesis after seeing three elements in
the input, in order to obtain confidence.

Note that {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)} is an r.e. class. To see this,
note that there is a two-place recursive function g with x ∈ K ′ iff g(x, y) = 1 for
almost all y and x /∈ K ′ iff g(x, y) = 0 for infinitely many y. Now let

L2〈x,y〉 = {x, x + y + 1} and

L2〈x,y〉+1 =

⎧⎨
⎩

{x, x + z + 1} if z is the least number with
z > y and g(x, z) �= 1;

{x} if g(x, z) = 1 for all z > y.

It is easy to verify that {L0, L1, . . .} = {D : |D| = 2∨ (|D| = 1∧D ⊆ K ′)}. Now
assume that some confident learner M for {L0, L1, L2, . . .} uses some hypotheses
space {H0, H1, H2, . . .} with {H0, H1, H2, . . .} = {L0, L1, L2, . . .}. Then one can
define the K-recursive function f with f(x) being the hypothesis to which M
converges on the text x∞. If x ∈ K ′ then Hf(x) = {x} as M learns this set. If
x /∈ K ′ then Hf(x) �= {x} as no member of {H0, H1, H2, . . .} equals {x}. The
test whether Hf(x) = {x} is also K-recursive. This would give a contradiction
to K ′ �≤T K. Thus there is no class-preserving confident learner for {L0, L1,
L2, . . .}. �
For conservative learning, a full hierarchy can be established. Note that the
following example can be transferred to many related notions like monotonic
[22] and non U-shaped learning [2] without giving more insight. Therefore, these
learning criteria are not considered in the present work.

Example 11. (a) The class {D : |D| ≤ 1} is prescribed conservatively but not
uniformly conservatively learnable.

(b) The class {D : |D| < ∞} is class-preservingly conservatively but not
prescribed conservatively learnable.

(c) The class {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)} is class-comprisingly
conservatively but not class-preservingly conservatively learnable.

Proof. (a) The prescribed learner knows the index a of ∅ in the given numbering
{H0, H1, H2, . . .}. So it conjectures Ha until a number x occurs in the input and
an index b is found with x ∈ Hb. Then the learner makes one mind change
to b and keeps this index forever. This learner is conservative and correct as
{x} is the only set in {H0, H1, H2, . . .} containing x. For the second part, let
S be a simple set [20], Se = S ∪ {0, 1, ..., e}, define class-preserving hypotheses
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spaces H0, H1, ..., where He = {He
0 , He

1 , ...} with He
x(y) = 1 if x ∈ Se

y − Se
y−1

and He
x(y) = 0 if x /∈ Se

y − Se
y−1. If {D : |D| ≤ 1} is uniformly conservatively

learnable, then there exists a recursive family of learners N0, N1, N2, . . . such
that for all e ∈ N, Ne conservatively learns the class {D : |D| ≤ 1} with respect
to He. The r.e. set A = {x : for some e, Ne outputs x on #∞} is infinite (as for
all e, Ne outputs an index larger than e) and disjoint to S. This contradicts the
fact that S is simple.

(b) The class of all finite sets is clearly conservatively learnable in the canonical
numbering of the finite sets. Now let I0, I1, I2, . . . be a recursive partition of the
natural numbers into intervals such that there is a simple set A with In �⊆ A for
all n. Let {L0, L1, L2, . . .} be the canonical numbering of the finite sets and let
Hm = Ln for m ∈ In−A and Hm = Ln∪{m+n+t, m+n+t+1} for m ∈ In∩A,
with m ∈ At−At−1. It is easy to see that {H0, H1, H2, . . .} is also a numbering of
all finite sets. Assume now that M is a learner using the hypotheses space {H0,
H1, H2, . . .}. Then one defines a recursive function f as follows: f(x) = b for the
first b found such that x ∈ Hb and M(xk) = b for some k. As all Hb are finite,
the set {f(0), f(1), f(2), . . .} contains infinitely many indices and is recursively
enumerable. Hence there is an x with f(x) ∈ A. It follows that {x} ⊂ Hf(x) as
Hf(x) contains at least two elements. So the learner M overgeneralizes on xk

and is not conservative.
(c) In Theorem 10, it has been shown that the class {D : |D| = 2 ∨ (|D| =

1 ∧ D ⊆ K ′)} is an r.e. class. The class-comprising confident learner given there
is also conservative. Now assume that some conservative learner M for this class
uses some class-preserving hypotheses space {H0, H1, H2, . . .}. Then one can
again define f(x), this time only partial-recursive, to be the b found such that
M outputs b on the text x∞ and x ∈ Hb. Now x ∈ K ′ iff f(x) is defined and
Hf(x) = {x}. This condition can be checked with oracle K although K ′ �≤T K.
From this contradiction follows that there is no class-preserving conservative
learner for {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)}. �

3 Vacillatory and Behaviourally Correct Learning

For vacillatory and behaviourally correct learning, a strict hierarchy from pre-
scribed to class-preserving to class-comprising learning can be established. It re-
mains open whether uniform learning is more restrictive than prescribed learning.

Theorem 12. Let L2a = {〈a, b〉 : b ∈ N} and L2a+1 = {〈a, b〉 : b ≤ |Wa|}.
Then {L0, L1, L2, . . .} is uniformly behaviourally correct learnable and class-
preservingly vacillatorily learnable but neither prescribed vacillatorily learnable
nor class-comprisingly explanatorily learnable.

Proof. Assume that {H0, H1, H2, . . .} = {L0, L1, L2, . . .} and We = {〈b, x〉 :
x ∈ Hb}. Let s be the length and D be the content of the input. Now a learner
Me is constructed. Me first computes the sets

– A = {c ≤ s : D = Hc,s} and
– B = {c ≤ s : D ∩ Hc,s �= ∅};
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then Me follows the first of the following cases which applies:

– If D = ∅ then Me outputs ?;
– If A �= ∅ then Me outputs min(A);
– If B �= ∅ then Me outputs some c ∈ B for which Hc,s has largest number of

elements;
– Otherwise Me repeats the previous conjecture.

The first case, together with the last, make sure that Me is total, starts with ? and
never returns to ? once it has taken another hypothesis. Assume now that Me sees
a text for a language Hb ∈ {L2a, L2a+1} and that b is the least index of Hb in {H0,
H1, H2, . . .}. Furthermore, assume that so much data has been observed such
that the following four conditions hold:

– s ≥ b;
– The datum 〈a, 0〉 is in both, D and Hb,s;
– If Hb �= L2a+1 then |Hb,s| > |L2a+1| and |D| > |L2a+1|;
– If Hb is finite then Hb = Hb,s = D and for all d < b and t ≥ s, Hd,t �= D.

Note that D �= ∅ and B �= ∅ and therefore Me outputs a hypothesis c different
from ?. Now it is shown that Hc = Hb: First note that 〈a, 0〉 ∈ D and b ∈ B,
hence the algorithm chooses c either by the second or the third condition in
the algorithm. It follows that Hc = L2a or Hc = L2a+1. If Hb is finite, it
follows directly from the learning algorithm that b = min(A) for the set A
considered there and hence c = b. If Hb is infinite and L2a+1 is finite, then
|Hc| ≥ |Hb,s| > |L2a+1| and Hc = L2a = Hb. If Hb and L2a+1 are both infinite
then Hb = L2a = L2a+1 and Hc = Hb. So Me is a behaviourally correct learner
for {L0, L1, L2, . . .} using the hypotheses space {H0, H1, H2, . . .}.

To see that {L0, L1, L2, . . .} is class-preservingly vacillatorily learnable, take
Hb = Lb for all b. For each language there are at most 2 indices in {H0, H1,
H2, . . .} and therefore the above described behaviorally correct learner is also a
vacillatory one.

To see that {L0, L1, L2, . . .} is not prescribed vacillatory learnable, one con-
structs a suitable hypotheses space as follows:

H〈a,b〉 =
{

L2a+1 if b = min({s : |Wa,s| = |Wa|});
L2a otherwise.

For each a there is a b with H〈a,b〉 = L2a+1; if Wa is finite then one can take b
as the minimum of the nonempty set {s : |Wa,s| = |Wa|}; if Wa is infinite then
one can take b = 0. The reason for the latter case is that then L2a = L2a+1.
Furthermore, all but at most one of the b satisfy L2a = H〈a,b〉. Hence {H0, H1,
H2, . . .} is a hypotheses space for {L0, L1, L2, . . .}. If there were a prescribed
vacillatory learner using {H0, H1, H2, . . .} as the hypothesis space then there
would also be a K-recursive function f such that f(a) is the maximal element
output by this learner on the canonical text for L2a+1. It would follow that Wa

is finite iff Wa,f(a) = Wa; note that f(a) ≥ 〈a, b〉 ≥ b for the least b such that
L2a+1 = H〈a,b〉. But then a K-recursive procedure could check, given a, whether
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Wa is finite. As such a procedure does not exist [21], {L0, L1, L2, . . .} is not
vacillatorily learnable with respect to the hypotheses space {H0, H1, H2, . . .}.

As just seen, {L0, L1, L2, . . .} is not prescribed vacillatorily learnable and
hence also not prescribed explanatorily learnable. It follows using Theorem 9
that {L0, L1, L2, . . .} is also not class-comprisingly explanatorily learnable. �

Theorem 13. For all a, b let

L〈a,b〉 =

⎧
⎨
⎩

{〈a, c〉 : c ∈ N} if b = 0;
{〈a, c〉 : c ≤ |Wa|} if b = 1;
{〈a, c〉 : c ≤ |Wa,d|} ∪ {〈a + 1, |Wa,d| + e + 1〉} if b = 2 + 〈d, e〉.

The class {L0, L1, L2, . . .} is class-preservingly behaviourally correct learnable
but not prescribed behaviourally correct learnable.

Proof. Recall that |Wa,d| ≤ d + 1 for all d. It is easy to see that {L0, L1,
L2, . . .} is a uniformly r.e. class. Assume that an input of length s and content
D is given. A behaviourally correct learner takes now the first case which applies.

– If there is a pair 〈a, b〉 such that 〈a + 1, a + b + 2〉 < s and L〈a,b〉,s = D then
output 〈a, b〉 for the least pair where these conditions are true.

– If there is an a such that {〈a, 0〉} ⊆ D ⊆ L〈a,0〉 then output 〈a, 0〉.
– Otherwise output ?

In this context it is assumed that for b > 1 and s > 〈a + 1, a + b + 2〉, L〈a,b〉,s =
L〈a,b〉 as one can compute all members directly from the parameters a, b. It is
easy to see that this learner succeeds on all finite sets from {L0, L1, L2, . . .}. So
assume that an infinite set L〈a,0〉 is given. If L〈a,1〉 = L〈a,0〉 then the learner
will eventually vacillate between these two indices. If L〈a,1〉 ⊂ L〈a,0〉 then L〈a,1〉
is finite and as the learner eventually sees an element of L〈a,0〉 − L〈a,1〉, it will
converge to 〈a, 0〉. So {L0, L1, L2, . . .} is class-preservingly behaviourally correct
learnable.

Now a hypotheses space is constructed using which {L0, L1, L2, . . .} cannot
be behaviourally correct learned. For all a, b let

H〈a,0〉 = L〈a,0〉;
H〈a,2b+1〉 = L〈a,b+2〉;

H〈a,2b+2〉 =

⎧
⎪⎨
⎪⎩

{〈a, c〉 : c ≤ |Wa,b|} if Wa,b = Wa;
{〈a, c〉 : c ≤ |Wa,b|} ∪ {〈a + 1, |Wa,b| + s + 1〉} if s is the least

number with
Wa,b ⊂ Wa,s.

It is easy to check that this class is an indexed family, that is, {H0, H1, H2, . . .}
is uniformly recursive. Thus, if one could behaviourally correct learn {L0, L1,
L2, . . .} using {H0, H1, H2, . . .} as the hypotheses space, one could also explana-
torily learn {L0, L1, L2, . . .} using {H0, H1, H2, . . .} (this folklore result is based
on the observation that, for hypotheses space being an indexed family, the mind
changes can be delayed until it can be verified that the later hypothesis differs
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from the earlier one). Using Theorem 9, this would imply that the class from
Theorem 12 (which is contained in {L0, L1, L2, . . .}) is prescribed explanato-
rily learnable and hence prescribed vacillatory learnable. This contradicts Theo-
rem 12. So {L0, L1, L2, . . .} is not prescribed behaviourally correct learnable. �

Corollary 14. Let {L0, L1, L2, . . .} be as in Theorem 13. Then {L0, L1, L2, . . .}
∪ {N} is class-preserving behaviourally correct learnable. Furthermore, no {F0,
F1, F2, . . .} ⊇ {L0, L1, L2, . . .}∪{N} is prescribed behaviourally correct learnable.

For the next result, let In = {2n − 1, 2n, 2n + 1, . . . , 2n+1 − 3, 2n+1 − 2} form a
partition of the natural numbers into intervals of length 2n and let C denote the
plain Kolmogorov complexity [17]. Furthermore, let

A = {m : ∃n [m ∈ In ∧ C(m) < 0.4n]} and
B = {m : ∃n [m ∈ In ∧ C(m) > 0.8n]}

be the sets of numbers of small and large Kolmogorov complexity, respectively.

Theorem 15. Let A and B be the sets of numbers of small and large Kol-
mogorov complexity as above. Then the class consisting of N, A and all sets
A ∪ {b} with b ∈ B is uniformly r.e. and is class-comprisingly but not class-
preservingly behaviourally correct learnable.

Proof. Note that A is recursively enumerable and B is co-r.e.; an indexing of
the class is now given by fixing one index a ∈ A and then letting La = A,
Lb = A ∪ {b} for all b ∈ B and Lb = N for all b ∈ N − B − {a}.

Note that 0 /∈ A∪B. Hence N is the only member of {L0, L1, L2, . . .} contain-
ing 0. Furthermore, let D0, D1, . . . be a canonical enumeration of all finite sets.
Now let

Hb =
{

N if 0 ∈ Db;
Db ∪ A if 0 /∈ Db.

Furthermore, one can build a behaviourally correct learner using the hypotheses
space {H0, H1, H2, . . .} by conjecturing Hb for the unique b with Db = content(σ)
on input σ. It is easy to verify that this learner succeeds on all languages in
{H0, H1, H2, . . .}. Therefore {L0, L1, L2, . . .} is class-comprisingly behaviourally
correct learnable.

Now assume that M is a class-preserving behaviourally correct learner for {L0,
L1, L2, . . .}. There is a family T0, T1, . . . of texts and an n such that

– Tx[n] is a fixed semantic locking sequence for M on A;
– Tx(n) = x;
– for all x, the subsequence Tx(n+1), Tx(n+2), Tx(n+3), . . . of Tx is the same

recursive enumeration of A.

Now one defines two sets X and Y according to the behaviour of M on Tx.

– X is the set of all x such that, for some m > n, M(Tx[m]) conjectures a set
containing x;
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– Y is the set of all x such that, for some m > n, M(Tx[m]) conjectures a set
containing 0.

Both sets are recursively enumerable. The set Y is disjoint to A as, for all x ∈ A
and all m > n, M(Tx[m]) is an index of A. As A is a simple set [17], Y is finite.
As A ∪ B ⊆ X ⊆ A ∪ B ∪ Y , the set A ∪ B is recursively enumerable. For each
sufficiently large n, at least half of elements of In are in A∪B. Now let Jn be the
first 20.6n elements of In to be enumerated into A∪B. The Jn are uniformly r.e.
and due to Kolmogorov-complexity considerations, for all sufficiently large n,
Jn ∩B = ∅. Hence Jn ⊆ A∩ In in contradiction to the fact that |A∩ In| ≤ 20.4n.
This shows that the learner M cannot exist and {L0, L1, L2, . . .} is not class-
preservingly behaviourally correct learnable. �

Theorem 16. There exists an r.e. class L which is class-comprisingly but not
class-preservingly vacillatorily learnable.

4 Prudence for Behaviourally Correct Learning

Osherson, Stob and Weinstein [19] were interested in the question whether every
learnable class is prudently learnable. Fulk [9] showed that every explanatory
learnable class is prudently explanatory learnable. Jain and Sharma [12] showed
the corresponding result for vacillatory learning. The next theorem shows this
result for behaviourally correct learning. In 1988, Kurtz and Royer [14] had
claimed to have this result, but their proof had a bug and the problem had
remained open since then. Furthermore, the construction of the prudent learner
in the next theorem is effective in the original learner. It is still open whether
prudence for explanatory and vacillatory learning can be effectivized.

Theorem 17. If L is a (not necessarily uniformly r.e.) behaviourally correct
learnable class then L is a subclass of an r.e. class which is class-preservingly
behaviourally correct learnable.

Proof. For any set A, let TA be the ascending text which is given by TA(x) = x
for all x ∈ A and TA(x) = # for all x /∈ A. Furthermore, let δ∅ be the empty
string and δA = TA[max(A) + 1] for all finite non-empty sets A. For example,
δ{0,2,3} = 0 # 2 3.

There is a behaviourally correct learner for the class L using the acceptable
numbering {W0, W1, W2, . . .} as hypotheses space and satisfying the following
constraints:

– M is consistent, that is, content(σ) ⊆ WM(σ) for all σ;
– M is rearrangement-independent, that is, WM(σ) = WM(τ) whenever σ, τ

have the same content and length;
– WM(σ) is finite whenever σ is not a semantical locking sequence for M on

WM(σ).
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Kurtz and Royer [14] showed that the first two conditions can be satisfied and
such a learner can be found effectively from any given learner. The third condi-
tion can also be effectively added since the complement of the set of semantical
locking sequences is K-r.e.; that is, σ is not a semantical locking sequence iff
there is a τ in (WM(σ) ∪ {#})∗ and an x ∈ N with x ∈ WM(στ) ⇔ x /∈ WM(σ).
For that reason, M is a behaviourally correct learner for all infinite sets for which
some index is output by M . So, to prove the theorem, one has mainly to take
care of finite sets.

Now the following new learner N is constructed. N is defined by mapping σ
to a hypothesis Hσ; thus the hypotheses space is given directly instead of N . Hσ

takes the first case which applies.

Case (1): H#s = ∅ for all s.
Case (2): HδD first enumerates all elements of D.

Let D′ = {0, 1, . . . , max(D)} − D. Let S = {s : WM(δD#max(D)),s ∩ D′ = ∅}.
For all s ∈ S, enumerate all elements of WM(δD#max(D)),s into HδD .
If WM(δD#max(D))∩D′ �= ∅ then let s = max(S), let E = D∪WM(δD#max(D)),s,
let x = min(WM(δD#max(D)),s+1 ∩ D′) and let F = D ∩ {0, 1, . . . , x}.
Now, if HδF ⊇ E then HδD = HδF else HδD = E.

Case (3): HδD#s with s > 0 is defined as follows. If there is an x such that
HδEx ,s = HδEx

= D for the set Ex = D ∩ {0, 1, . . . , x} or if WM(δD#t) = D
for all t ≥ s then HδD#s = D else HδD#s = HδD .

Case (4): Hσ = HδD#s if Hσ is not defined by Cases (1), (2), (3), s = max({|σ|−
max(D) − 1, 0}) and D = content(σ).

Note that the only infinite sets in the hypotheses space are the ones which are
conjectured by M . So M learns all the infinite sets in the hypotheses space.
Furthermore, for any A in the hypotheses space, if Ex = {0, 1, . . . , x} ∩ A and
δEx#max(Ex) is a semantic locking sequence for M on A, then for all finite D
such that Ex ⊆ D ⊆ A, HδD = A. This can be easily seen by induction on
cardinality of D − Ex, as in Case (2), either HδD is made equal to A or HδD

would simulate HδF for some F such that Ex ⊆ F ⊂ D.
It will be shown first that the hypotheses space covers all sets learned by M

and then it will be shown that all sets in the hypotheses space are learned by N .
Clearly if M learns a finite set D then HδD#s = D for almost all s. Now

consider an infinite set A learned by M . Let Ex = A ∩ {0, 1, 2, . . . , x} for all x.
As M learns A there is a semantic locking sequence τ for M on A. Now let x ∈ A
be such that x > |τ | + max(content(τ)). Then, for the sequence δEx#max(Ex),
there is an η ∈ (Ex ∪ {#})∗ such that |τη| = |δEx#max(Ex)| and content(τη) =
content(δEx#max(Ex)) = Ex. As M is rearrangement-independent, one has that
WM(δEx #max(Ex)) = A. Hence HδEx

= A as well. This completes the first part of
the verification.

For the second part of the verification consider any set A occurring in the
hypotheses space of N . There are three cases, those where A is empty, where A
is finite but not empty and where A is infinite.

Case (a): A = ∅. N learns A as H#s = ∅ for all s by Case (1) in the algorithm
to enumerate the hypotheses space.
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Case (b): A is finite but not empty. Let D be smallest set such that HδD#s = A
for some s. By Case (1) in the algorithm for Hσ, D is not empty.

Assume the subcase A = HδD#s ⊂ HδD . By Case (3) and D being smallest
set such that HδD#t = A for some t, this can happen only if A = D and
WM(δD#t) = D for all t ≥ s. So HδD#t = D for all t ≥ s and hence N learns A
in this subcase as well.

Assume the subcase A = HδD#s = HδD . Hence, by Case (2) it follows that
there is no element in A − D below max(D) since otherwise HδF = A for some
F ⊂ D. Thus, D = A∩{0, 1, . . . , max(D)}. Therefore, HδA#t = A for almost all
t and N learns A.

Case (c): A is infinite. Again, let Ez = A ∩ {0, 1, . . . , z} for all z. As M is
rearrangement-independent, there is a semantic locking sequence for M on A of
the form δEx#max(Ex). Hence only finitely many sets HδEz

are finite. So there is
an y ∈ A such that y > x and y is an upper bound on all elements of these finite
sets HδEz

. Let F be any finite set with Ey ⊆ F ⊆ A. Let Gz = F ∩ {0, 1, . . . , z}.
If z ≥ y then HδGz

= A (as Ex ⊆ Gz ⊆ A) and HδGz
�= F . If z < y then Gz = Ez

and HδGz
�= F again. Furthermore, M does not learn F . Hence HδF #s = HδF =

A for all s. So δEy is a semantic locking sequence for N on A. It follows that
N learns A. This completes the verification that N is a behaviourally correct
learner for all the languages in its hypotheses space. �
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Abstract. In this paper we consider learnability in some special num-
berings, such as Friedberg numberings, which contain all the recursively
enumerable languages, but have simpler grammar equivalence problem
compared to acceptable numberings. We show that every explanatorily
learnable class can be learnt in some Friedberg numbering. However, such
a result does not hold for behaviourally correct learning or finite learn-
ing. One can also show that some Friedberg numberings are so restrictive
that all classes which can be explanatorily learnt in such Friedberg num-
berings have only finitely many infinite languages. We also study similar
questions for several properties of learners such as consistency, conser-
vativeness, prudence, iterativeness and non U-shaped learning. Besides
Friedberg numberings, we also consider the above problems for program-
ming systems with K-recursive grammar equivalence problem.

1 Introduction

Consider the following model of learning languages, first studied by Gold [14].
A learner is receiving, one element at a time, all and only the sentences of a lan-
guage (such a presentation of data is called text of the language). As the learner
is receiving the elements of the language, it conjectures hypotheses about what
the input language might be. The conjecture about the input language may
change over time, as more and more data becomes available. In inductive infer-
ence, we use indices from some underlying numbering or programming system
as hypotheses. Following conventions from formal languages, we refer to these
indices as grammars. One can say that the learner is successful if the sequence of
grammars output as above converges to a grammar for the input language. This
is essentially the model of TxtEx-learning (= explanatory learning) as proposed
by Gold [14] and subsequently studied by several researchers [1,5,10,16,26,30].

One of the important issues in learning has been the hypotheses space which
a learner uses for making its conjectures. A natural hypotheses space, as consid-
ered by Gold [14], is an acceptable programming system. However, there have
also been several studies which consider special programming systems [30]. For
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example, in the context of learning indexed families of languages (an indexed
family is a uniformly recursive family of languages), the hypotheses space often
considered are themselves indexed families (where the hypotheses space might
be class-preserving or class-comprising; a class-preserving hypotheses space con-
tains exactly the languages in the class being learnt while a class-comprising hy-
potheses space may contain some other languages in addition to the languages of
the class being learnt). Furthermore, considering special hypotheses spaces have
also been useful in obtaining various characterizations of learnability — see, for
example, [17,28,30].

Testing grammar equivalence in acceptable numberings is a difficult problem
[24]. In this paper we consider learnability in some special numberings, which
contain all the recursively enumerable languages, but with simpler grammar
equivalence problem. Friedberg numberings [11] are numberings which contain
exactly one grammar for each recursively enumerable language. Besides their
historical importance, Friedberg numberings may be considered as a natural hy-
potheses space, as they do not contain any redundancy. Another natural class
of numberings is the Ke-numberings in which grammar equivalence problem is
recursive in the halting problem. Freivalds, Kinber and Wiehagen [12] consid-
ered learnability of recursive functions in Friedberg and other 1–1 numberings
(for the criteria of explanatory and finite learning). We extend their study by
considering how the learnability in various common criteria are effected when
one uses hypotheses spaces as above.

We show (Theorem 9) that for TxtEx-model of learning, as described above,
one can learn every TxtEx-learnable class in some Friedberg numbering. How-
ever, no Friedberg numbering is omnipotent. More precisely, for every Friedberg
numbering η, there exists a TxtEx-learnable class which cannot be learnt using
hypotheses space η. Furthermore, there are Friedberg numberings η which are
trivial in the sense that any class TxtEx-learnable in η contains only finitely
many infinite languages (Theorem 26).

In finite learning [14], denoted TxtFin, one requires that the learner out-
puts just one hypothesis, which must be correct. In contrast to the result for
TxtEx-learning, there are TxtFin-learnable classes which cannot be learnt in
any Friedberg numbering (Theorem 10). However, Ke-numberings are not so re-
strictive, as every TxtFin-learnable class can be learnt in some Ke-numbering
(Theorem 14). Theorem 12 gives a characterization of the recursively enumerable
classes which can be learnt in Friedberg numberings.

Several properties of learners have been considered in the literature. For ex-
ample a consistent learner [1,4] is a learner whose hypotheses always generate the
data seen up to the point an hypothesis is made. A conservative learner does not
change a hypothesis which is consistent with the input [2,30]. A prudent learner
[22] only outputs hypotheses for the languages which it is able to learn. A confi-
dent learner [22] always converges on any input text, even on texts for languages
outside the class being learnt. A non U-shaped learner is a learner which does
not have a sequence of hypotheses of form “. . ., correct hypothesis, . . ., wrong
hypothesis, . . ., correct hypothesis, . . .” [3,7,8]. We show that, though confident
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and consistent learning are not restrictive for learning in Friedberg numberings
(Theorems 15 and 24), non U-shaped, conservative and prudent learning are re-
strictive (Theorems 18 and 19). On the other hand, none of the above properties
are restrictive for learning in Ke-numberings (Theorems 20, 21 and 22 along with
Theorems 15 and 24).

Behaviourally correct learning [10,23] is similar to TxtEx-learning except
that one does not require syntactic convergence, but only semantic convergence:
the hypotheses conjectured by the learner are correct beyond some time. For
Friedberg numberings, notion of TxtBc collapses to TxtEx due to trivial gram-
mar equivalence problem. It is open at present whether every TxtBc-learnable
class can be learnt in some Ke-numberings — though we can show that every
class which can be TxtFEx-learnt can be TxtBc-learnt in some Ke-numbering
(TxtFEx-learning [9] is TxtBc-learning where the learner only outputs finitely
many distinct hypotheses). We can though show that there exists a non U-
shaped behaviourally learnable class, which cannot be learnt in non U-shaped
behaviourally correct manner in any Ke-numbering (Theorem 30).

2 Notation and Preliminaries

Any unexplained recursion-theoretic notions are from [21,24].
N denotes the set of natural numbers, {0,1,2,. . . }. ∅ denotes empty set. card(S)

denotes the cardinality of set S. max(S) and min(S), respectively, denote the
maximum and minimum of a set S, where max(∅) is 0 and min(∅) is ∞. The
symbols ⊆, ⊇, ⊂, ⊃ respectively denote the subset, superset, proper subset and
proper superset relation between sets. A � B denotes the symmetric difference
of A and B: (A ∪ B) − (A ∩ B). The quantifiers ∀∞ and ∃∞ mean “for all but
finitely many” and “there exist infinitely many”, respectively.

A pair 〈i, j〉 stands for an arbitrary, computable one-to-one encoding of all
pairs of natural numbers onto N [24]. Similarly we can define 〈·, . . . , ·〉 for en-
coding n-tuples of natural numbers, for n > 1, onto N.

Any partial recursive function of two arguments is called a numbering. For a
numbering ψ, ψi(x) denotes ψ(i, x). We let Ψ denote a Blum complexity measure
[6] associated with the numbering ψ. We let ψi,s(x) = ψi(x), if x < s and
Ψi(x) < s; ψi,s(x) is undefined if x ≥ s or Ψi(x) ≥ s. We let Wψ

i = domain(ψi)
and Wψ

i,s = domain(ψi,s). We call i a ψ-grammar for Wψ
i .

For numberings ψ and η, ψ ≤ η denotes that there exists a recursive function
g such that Wψ

i = W η
g(i) for all i. ψ ≤A η denotes that there exists an A-recursive

function g such that Wψ
i = W η

g(i) for all i.
E denotes the class of all recursively enumerable (r.e.) subsets of the natural

numbers [24]; an r.e. set is also called a language. F is the class of all finite
sets and I is the class {∅, {0}, {0, 1}, {0, 1, 2}, . . . , {0, 1, . . . , n}, . . .}. A universal
numbering [24] ψ is a numbering such that, for all L ∈ E , there exists a ψ-
grammar for L. An acceptable numbering [24] ψ is a numbering such that, for all
numberings η, η ≤ ψ. Acceptable numberings are also called Gödel numberings.
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ϕ denotes a fixed acceptable programming system for the partial computable
functions [24]. We let We = Wϕ

e = domain(ϕe). K = {e : e ∈ We}, the diagonal
halting problem, is a standard example for a nonrecursive r.e. set.

Friedberg [11] showed that there exist numberings in which every r.e. language
has exactly one index (grammar). Hence the equivalence problem for grammars
is obviously recursive in such numberings; furthermore, one can easily translate
every numbering with a recursive equivalence problem into a Friedberg number-
ing. It might be important to relax this condition and to consider numberings
where the equivalence problem is only K-recursive. K-recursive equivalence and
translations have already received some attention; for example Goncharov [15]
showed that if two Friedberg numberings of a given family of r.e. sets are not
equivalent but can be K-recursively translated into each other, then this family
has infinitely many non-equivalent numberings.

We are not aware of any common name for numberings with a K-recursive
equivalence problem; thus we refer to them as Ke-numberings, “Ke” standing
for “K-recursive equivalence”.

Definition 1. A Friedberg-numbering is a universal numbering in which every
recursively enumerable set has exactly one grammar. A Ke-numbering is a uni-
versal numbering for which the grammar equivalence problem is K-recursive.

A class L is said to be recursively enumerable if there exists an r.e. set S such
that L = {Wi : i ∈ S}. Note that for a non-empty recursively enumerable class
L, there exists a recursive function h such that L = {Wh(i) : i ∈ N}. A class L
is said to be 1–1 recursively enumerable iff L is finite or there exists a recursive
function h such that L = {Wh(i) : i ∈ N} and, for all different i, j, Wh(i) �= Wh(j).

We now introduce the basic definitions of inductive inference, that is, of Gold-
style computational learning theory.

Definition 2. A sequence σ is a mapping from an initial segment of N into
N∪{#}. The content of a finite sequence σ is the set of natural numbers occurring
in σ and is denoted by content(σ). The length of a sequence σ is the number of
elements in the domain of σ and is denoted by |σ|. For a subset L of N, Seg(L)
denotes the set of sequences σ with content(σ) ⊆ L. An infinite sequence T is a
mapping from N to N∪{#}. Furthermore, content(T ) denotes the set of natural
numbers in the range of T . T is a text for L iff L = content(T ).

Concatenation of two sequences σ and τ is denoted by στ . If x ∈ (N∪{#}), then
σx means στ where τ is the sequence consisting of exactly one element which is
x. σ ⊆ τ means that σ is an initial segment of τ and σ ⊂ τ means that σ is a
proper initial segment of τ .

Intuitively, a text for a language L is an infinite stream or sequential pre-
sentation of all the elements of the language L in any order and with the #’s
representing pauses in the presentation of the data. For example, the only text
for the empty language is an infinite sequence of #’s. We let T , with possible
subscripts and superscripts, range over texts. T [n] denotes the finite initial seg-
ment of T with length n, that is T [n] is T (0)T (1) . . . T (n − 1). σ ⊂ T denotes
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the fact that σ is an initial segment of T . Observe that in this case we have
σ = T [|σ|]. Note that one can effectively produce a text for a language L, from
its grammar in a given numbering. Canonical text for Wj (Wψ

j ) denotes such an
effective text.

A learner is an algorithmic mapping from finite sequences to N∪{?}. Output
of ? denotes the fact that the learner does not wish to issue a conjecture on
the input. The elements of N in the output of a learner are interpreted as a
grammar in some prefixed numbering (also called hypotheses space). M , with
possible superscripts and subscripts, is intended to range over language learning
machines. We say that M(T )↓ iff there exists an i such that, for all but finitely
many n, M(T [n]) = i. In this case we say that M(T )↓ = i; in the case that there
is no such i we say that M(T )↑.

We now give the formal definitions of explanatory (TxtEx) learning, finite
(TxtFin) learning and behaviourally correct (TxtBc) learning.

Definition 3. [10,14,23] Suppose ψ is a numbering and let I be a variable rang-
ing over the criteria TxtEx, TxtFin and TxtBc which are defined now.

(a) M TxtExψ-identifies a text T just in case (∃i : Wψ
i = content(T ))

(∀∞n)[M(T [n]) = i].
(b) M TxtFinψ-identifies a text T just in case (∃i : Wψ

i = content(T ))
(∃n)[(∀m ≥ n)[M(T [m]) = i] and (∀m < n)[M(T [m]) =?]].

(c) M TxtBcψ-identifies a text T just in case (∀∞n)[Wψ
M(T [n]) = content(T )].

(d) M Iψ-identifies an r.e. language L (written: L ∈ Iψ(M)) just in case M
Iψ-identifies each text for L.

(e) M Iψ-identifies a class L of r.e. languages (written: L ⊆ Iψ(M)) just in
case M Iψ-identifies each language from L.

(f) Iψ = {L ⊆ E : (∃M)[L ⊆ Iψ(M)]} and I =
⋃

ψ Iψ.

Note that parts (d), (e) and (f) are not specific to I ∈ {TxtEx,TxtFin,TxtBc}
but also done for other learning criteria introduced later. Furthermore, as ϕ is
acceptable numbering, it holds for all numberings ψ that TxtExψ ⊆ TxtExϕ,
TxtFinψ ⊆ TxtFinϕ and TxtBcψ ⊆ TxtBcϕ. Thus, I = Iϕ for I ∈ {TxtEx,
TxtBc,TxtFin}. For this reason, we often use the notation I-identification for
Iϕ-identification.

Blum and Blum [5] introduced the notion of locking sequences and Fulk [13]
generalized this notion to stabilizing sequences. We use these notions often in
our proofs.

Definition 4. (a) [13] We say that σ is a TxtEx-stabilizing sequence for a
learner M on a set L iff σ ∈ Seg(L) and M(στ) = M(σ) for all τ ∈ Seg(L).

(b) [5] σ is called a TxtExψ-locking sequence for M on L iff σ is a stabilizing
sequence for M on L and Wψ

M(σ) = L.

Lemma 5. [5] Suppose M TxtExψ-identifies L. Then,
(a) there exists a TxtExψ-locking sequence for M on L;
(b) for every σ ∈ Seg(L), there exists a τ ∈ Seg(L) such that στ is a TxtExψ-

locking sequence for M on L;
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(c) every TxtEx-stabilizing sequence σ for M on L is also a TxtExψ-locking
sequence for M on L.

Note that the definitions for stabilizing and locking sequence, as well as Lemma 5,
can be generalized to other learning criteria such as TxtBc. We often omit the
term like “TxtExψ” from TxtExψ-locking (stabilizing) sequence, when it is
clear from context.

We assume some fixed 1–1 ordering of all the finite sequences, σ0, σ1, . . .; thus,
one can talk about the least stabilizing sequence and so on.

Definition 6. (a) [5] M is order independent iff for all texts T , if M(T )↓ = i,
then for all T ′ such that content(T ′) = content(T ), M(T ′)↓ = i.

(b) [13,25] M is rearrangement independent iff for all σ and τ such that
content(σ) = content(τ) and |σ| = |τ |, M(σ) = M(τ).

Given any learner M , one can construct a learner M ′ such that TxtEx(M) ⊆
TxtEx(M ′) and M ′ is rearrangement and order independent [5,13].

In this paper we are mainly interested in learnability in Friedberg numberings
and Ke-numberings. To this end, for any learning criterion I, we let FrI denote
the union of Iψ , where ψ is a Friedberg numbering and let KeI denote the union
of Iψ , where ψ is a Ke-numbering.

3 Ke-Numberings and Friedberg Numberings

In this section, some basic learnability properties are established for Ke-num-
berings and Friedberg numberings. The next result shows that there are quite
natural examples of Ke-numberings:

Proposition 7. If ψ is a universal numbering such that every infinite r.e. lan-
guage has only one ψ-grammar, then ψ is a Ke-numbering.

Proof. Given two different indices i, j, search with help of the oracle K until
an x is found such that one of the following conditions hold:

– x ∈ Wψ
i � Wψ

j ;
– (∀y ∈ Wψ

i ∪ Wψ
j )[y ≤ x].

The search terminates as either the two sets are different or both are finite and
equal. Having determined x,

Wi = Wj ⇔ Wi ∩ {0, 1, . . . , x} = Wj ∩ {0, 1, . . . , x}.

The above can be checked using the oracle K. �

Theorem 8. Suppose ψ is a Ke-numbering. Then, there exists a Friedberg num-
bering η such that ψ ≤K η and η ≤K ψ.

Proof. We use a construction similar to that of Kummer [20, pages 29–30]. Let
ψ be a Ke-numbering. There is a recursive {0, 1}-valued function F such that
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– F (i, 0) = 0 for all i;
– (∀∞t) [F (i, t) = 1] iff (∀j < i) [Wψ

j �= Wψ
i ] and (∃x) [x + 1 ∈ Wψ

i ∧ x /∈ Wψ
i ];

Now let

W η
0 = N;

W η
〈i,t〉+1 =

⎧
⎪⎪⎨
⎪⎪⎩

Wψ
i if F (i, t) = 0 and F (i, s) = 1 for all s > t;

{x : x < 〈i, t − 1〉} if F (i, t) = 1;
{x : x < 〈i, s − 1〉} if s is the least number with

s > t and F (i, t) = F (i, s) = 0.

Intuitively, for i being the minimal ψ-grammar for an r.e. language not in {N}∪I,
〈i, t〉 + 1 is the (only) η-grammar for Wψ

i , where t is the unique number such
that F (i, t) = 0 and F (i, s) = 1 for all s > t. All the other η-grammars are for
languages in {N}∪I, where one makes sure that there is exactly one η-grammar
for each of these languages.

It is easy to verify that η is a Friedberg numbering. Moreover, Wψ
j = W η

r

can be checked using oracle K as follows. As ψ is a Ke-numbering, one can find
using the oracle K the minimal i with Wψ

j = Wψ
i . Then Wψ

i = W η
r iff one of

the following four conditions holds:

– Wψ
i = N and r = 0;

– r = 〈k, t〉 + 1, F (k, t) = 0, k = i and for all s > t, F (i, t) = 1;
– r = 〈k, t〉 + 1, F (k, t) = 1 and Wψ

i = {x : x < 〈i, t − 1〉};
– r = 〈k, t〉 + 1, F (k, t) = 0, s = min({u > t : F (k, u) = 0}) exists and

Wψ
i = {x : x < 〈k, s − 1〉}.

The k and t in the last three conditions are computed from r, thus not quantified.
Hence each of the above conditions can be determined K-recursively. It also
follows that one can find, using oracle K, for any given j the corresponding r
with W η

r = Wψ
j and for any given r the minimal i with Wψ

i = W η
r . Thus, the

theorem follows. �
Note that for Friedberg numberings, the grammar equivalence problem is re-
cursive. Thus, FrTxtBc = FrTxtEx. Theorem 8 implies that KeTxtEx =
FrTxtEx as indices can be translated in the limit from a given Ke-numbering
to a chosen Friedberg numbering. Theorem 20 below shows that TxtEx =
KeTxtEx; note that the proof is delayed to that place as the theorem actually
shows a bit more than just TxtEx = KeTxtEx. These two results together give
the following as our first result. Here note that, for function learning, Freivalds,
Kinber and Wiehagen [12] showed that every explanatorily learnable class of
recursive functions is learnable in some Friedberg numbering.

Theorem 9. TxtEx ⊆ FrTxtEx.

4 Finite Learning

Freivalds, Kinber and Wiehagen [12] showed that in the context of learning
recursive functions, every finitely learnable class of recursive functions can be
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learnt in some Friedberg numbering. In contrast, our next result shows that
for TxtFin, requiring learning in some Friedberg numbering is restrictive. Note
that the following result holds, even if one considers learnability of only infinite
languages (which can be proved by easy cylinderification of the languages in the
class considered in the following proof).

Theorem 10. TxtFin �⊆ FrTxtFin.

Proof. Let L = {L : (∀x ∈ L)[Wx = L]}. Clearly, L ∈ TxtFin. Suppose by way
of contradiction that M TxtFin-identifies L in Friedberg numbering ψ. Without
loss of generality assume that M does not output more than one conjecture on
any text. Then, by Smullyan’s double recursion theorem [24], there exist distinct
e1, e2 such that We1 , We2 may be defined as follows.

We1 = We2 = {e1, e2}, if there exist τ1, τ2 such that content(τi) ⊆ {ei},
M(τ1)↓ �=?, M(τ2)↓ �=? and M(τ1)↓ �= M(τ2)↓; otherwise, Wei = {ei}. It is easy
to verify that Wei ∈ L. Furthermore, if for some p, M outputs either ? or p,
on all sequences in Seg({e1}) ∪ Seg({e2}), then clearly We1 �= We2 and thus M
does not TxtFinψ-identify L. On the other hand, if there exist τ1, τ2 such that
τi ∈ Seg({ei}), M(τ1)↓ �=?, M(τ2)↓ �=?, and M(τ1)↓ �= M(τ2)↓, then We1 = We2

and M does not TxtFinψ-identify L (as ψ is a Friedberg numbering). In either
case, M does not TxtFinψ-identify L. �
A learner is prudent [22] if it only outputs grammars (in a given numbering
used as hypotheses space) for the languages it learns (according to a given crite-
rion). We denote prudent learning by attaching “Prudent” to the name of the
criteria. One can strengthen the above proof to show that PrudentTxtFin �⊆
FrTxtFin. This can be done by using L = {We1(M), We2(M) : M is a learning
machine}, where e1(M) and e2(M) denote the values of e1 and e2 as in the proof
above, obtained effectively from the learner M .

Remark 11. In contrast to Theorem 10, one can show that several natural
classes are finitely learnable in Friedberg numberings. The main idea is to use
the even indices to provide a one-one numbering of a natural class of sets and
to use the odd indices to make a Friedberg numbering of all remaining r.e.
sets. Hence, for every n ∈ N, {S : card(S) = n} ∈ FrTxtFin. Furthermore,
{{〈i, j〉 : j ∈ N} : i ∈ N} ∈ FrTxtFin. Another natural class in FrTxtFin is
{S : (∃i) [S ⊆ {〈i, j〉 : j ∈ N} and card(S) = f(i)]} for some recursive function
f where only non-empty sets S are considered.

Our next result gives a characterization of FrTxtFin-learning for uniformly
recursively enumerable classes.

Theorem 12. A recursively enumerable class is in FrTxtFin iff it is 1–1 re-
cursively enumerable and in TxtFin.

Proof. Suppose L is r.e. and L ∈ FrTxtFin. Let M and Friedberg numbering
ψ be such that L ⊆ TxtFinψ(M). If L is finite, then the theorem immediately
follows. So assume L is infinite. Let red be a recursive function such that Wψ

i =
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Wred(i), for all i. Let S = {red(i) : (∃L ∈ L)(∃σ ∈ Seg(L))[M(σ) = i]}. Let h(j)
denote the (j + 1)-th element in some 1–1 enumeration of S. It is easy to verify
that h witnesses that L is 1–1 recursively enumerable.

Now suppose L is 1–1 recursively enumerable and L ∈ TxtFin as witnessed
by M . Without loss of generality assume L is infinite. Let h be such that
L = {Wh(i) : i ∈ N} and, for all different i, j, Wh(i) �= Wh(j). Without loss
of generality assume that M only outputs conjectures of form h(j) on any input
(whether from or outside the class L).

Before defining the numbering ψ, we need to introduce an auxiliary function
F which converges to 1 on minimal indices of non-members of L ∪ I ∪ {N}
and outputs infinitely many zeroes on other inputs. More precisely, there is a
{0, 1}-valued recursive function F satisfying the following requirements:

– F (i, 0) = 0 for all i;
– (∀∞t) [F (i, t) = 1] iff (∀j < i) [Wj �= Wi] and (∃x) [x +1 ∈ Wi ∧x /∈ Wi] and

either (∀σ ∈ Seg(Wi)) [M(σ) =?] or (∃σ ∈ Seg(Wi)) [M(σ) �=? ∧ WM(σ) �=
Wi].

It is easy to verify that the second condition is a Σ2 condition. Hence such a
function F exists. Now the numbering ψ is defined as follows.

– Wψ
3e = Wh(e).

– Wψ
3〈i,t〉+1 = Wi, if F (i, t) = 0 and for all s > t, F (i, s) = 1. Otherwise,

Wψ
3〈i,t〉+1 will be spoiled and becomes some set from I not assigned to any

other value.
– Wψ

3e+2 is either N or a member of I.

We assume that the Wψ
3e+1 which are spoiled and Wψ

3e+2 together enumerate
I ∪ {N} in 1–1 fashion (except for the unique element of I ∪ {N}, if any, which
belongs to L).

It is now easy to verify that ψ is a Friedberg numbering and one can TxtFinψ-
identify L by outputting 3h(e), whenever M outputs h(e). �
The above does not give a characterization of FrTxtFin, as the following theo-
rem shows that there does exist a class in FrTxtFin which is not contained in
any TxtFin-learnable recursively enumerable class.

Theorem 13. There exists a class L ∈ FrTxtFin which is not contained in
any r.e. class in TxtFin.

In contrast to this, finite learning is preserved when all Ke-numberings are per-
mitted as hypotheses spaces.

Theorem 14. TxtFin ⊆ KeTxtFin.

5 Explanatory Learning with Additional Constraints

A learner is said to be confident [22] if it converges on all input texts, irrespective
of whether the text is for a language in the class to be learnt or not. We denote
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confident learning by attaching “Conf” to the name of the criteria. The following
theorem shows that confident learning in some Friedberg numbering can be
achieved for every confident learnable class.

Theorem 15. ConfTxtEx = ConfFrTxtEx.

Even though every class which is Confidently learnable can be learnt in Fried-
berg numberings, there is still a subtle difference between learning in Friedberg
numberings and acceptable numberings.

Remark 16. Let L1 = {L : L �= ∅ and Wmin(L) = L}. Let L2 = {L : card(L) ≥
2 and Wmin2(L) = L}, where min2(L) denotes the second least element of L,
if any. It is easy to see that both L1 and L2 are in ConfTxtEx. However,
L1 ∪ L2 �∈ TxtEx as can be shown by using the idea of the proof of Case [9]
that TxtFEx2 �⊆ TxtEx (here TxtFEx2 learning allows a learner to eventually
vacillate among up to 2 grammars for the language being learnt — we refer the
reader to [9] for details). So ConfTxtEx is not closed under union for acceptable
numberings.

However, confident learning is closed under union, if a Friedberg numbering or
Ke-numbering is used.

Proposition 17. Let ψ be a Ke-numbering and L1, L2 ∈ ConfTxtExψ. Then
L1 ∪ L2 ∈ ConfTxtExψ.

In contrast to confidence, several other properties do not preserve their full
learning power when using Friedberg numberings instead of Gödel numberings
as hypotheses spaces.

A learner is said to be U-shaped on L (see [3,7,8]), if on some text T for L,
for some n, m, k with n < m < k, M(T [n]) and M(T [k]) are grammars for L (in
the numbering being used as hypotheses space), but M(T [m]) is not a grammar
for L. A learner is said to be non U-shaped on L if it is not U-shaped on L. A
learner NUShI-identifies a class L if it I-identifies L and is non U-shaped on
each L ∈ L.

The following theorem shows that even simple classes such as F fail to be
NUShTxtEx-identified in Friedberg numberings.

Theorem 18. F �∈ NUShFrTxtEx.

Conservative learning [2,30] requires that a learner does not abandon a hypoth-
esis which is consistent with the input seen so far. Strong monotonicity [18] is
a requirement that learners always output larger and larger hypothesis: for all
texts T and m, n with m < n, Wψ

M(T [m]) ⊆ Wψ
M(T [n]) (where ψ is the numbering

used as hypotheses space).

Theorem 19. The class F of all finite sets is not conservatively, prudently or
strong monotonically learnable in Friedberg numberings.

However, prudence is not restrictive for Ke-numberings.



Learning in Friedberg Numberings 89

Theorem 20. TxtEx ⊆ PrudentKeTxtEx.

Proof. Suppose a TxtEx-learner M is given. Without loss of generality assume
that either M TxtEx-identifies N or M TxtEx-identifies each member of I (see
[13]).

Let F (·, ·) be a recursive function such that limt→∞ F (i, t) converges to σ, if σ
is the least stabilizing sequence for M on Wi; limt→∞ F (i, t) does not converge,
if there exists no such σ.

Let G(·, ·) be a recursive function such that limt→∞ G(i, t) converges to 1 iff
i is the least ϕ-grammar for Wi; limt→∞ G(i, t) does not converge if i is not the
least ϕ-grammar for Wi.

Note that there exist such F and G. Let Y = N if M TxtEx-identifies N.
Otherwise, Y = ∅. Thus, M TxtEx-identifies Y ∪ S, for each S ∈ I.

Wψ
2〈j,m,t〉 = Wj , if the following properties hold for all s ∈ N:

– M(σm) = j;
– if s = t − 1, then F (j, s) �= F (j, t);
– if s ≥ t, then F (j, s) = σm.

Otherwise, Wψ
2〈j,m,t〉 = Y ∪ {x : x < s} for the least s where one of the above

properties fails.
Intuitively, the above properties checked if M(σm) = Wj , σm is the least

stabilizing sequence for M on Wj and t is the convergence point for F (j, ·).

Let Wψ
2〈j,m,t〉+1 = Wj , if the following properties hold for all s ∈ N:

– if s = t − 1, then G(i, s) = 0;
– if s ≥ t, then G(i, s) = 1;
– if m = 0, then there exists an s′ > s such that F (i, s′) �= F (i, s);
– if m = 〈v, w〉 + 1 ∧ s = v − 1, then F (i, s) �= F (i, v);
– if m = 〈v, w〉 + 1 ∧ s > v, then F (i, s) = F (i, v);
– if m = 〈v, w〉+1, then there is an s′ ≥ s such that [w = min(WM(F (i,v)),s′ �

Wj,s′)].

Otherwise, Wψ
2〈j,m,t〉+1 = Wj,s, for the least s for which one of the above prop-

erties fails.
Intuitively, first two properties above check if G(i, ·) converges to 1, with

t being the convergence point for G(i, ·). Third property checks, for m = 0,
whether F (i, ·) diverges. Fourth and sixth properties check, for m = 〈v, w〉 + 1,
whether v is the convergence point for F (i, ·) and w = min(WM(F (i,v)) � Wj).

Claim. (a) If M has a least stabilizing sequence on L which is also a locking
sequence for M on L, then 2〈j, m, t〉 is a ψ-grammar for L, where M(σm) = j,
and σm is the least stabilizing sequence for M on L and t is the convergence
point for F (j, ·).

(b) ψ is a universal numbering (though not acceptable).
(c) every infinite recursively enumerable language L, except possibly for N,

has exactly one ψ-grammar.
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(d) N has exactly one ψ-grammar, except possibly for grammars of the form
2〈j, m, t〉 which eventually follow the otherwise clause in the definition of Wψ

above.
(e) M has a least stabilizing sequence for each Wψ

2i which is also a locking
sequence for M on Wψ

2i.

We now prove the claim and then continue with the main proof.
Part (a) follows from the definition of Wψ

2〈j,m,t〉.
For (b), suppose L is r.e., If M has a least stabilizing sequence on L, which

is also a locking sequence for M on L, then part (a) gives a ψ-grammar for L.
Otherwise, let i be the least ϕ-grammar for L. Let t be the convergence point

for G(i, ·). If M does not have a least stabilizing sequence on L, then 2〈i, 0, t〉+1
is the ψ-grammar for L. Otherwise, let v be the convergence point of F (i, ·).
Let w = min(WM(σ) � Wj), where σ = F (i, v). Then, 2〈i, 〈v, w〉 + 1, t〉 + 1 is a
ψ-grammar for L.

For (c) note that if M has a least stabilizing sequence on L, which is also a
locking sequence for M on L, then the proof of part (a) gives the only ψ-grammar
for L. Otherwise the proof of part (b) gives the only ψ-grammar for L.

Part (d) can be proved similarly to part (c).
Part (e) follows directly from the definition of Wψ

2〈j,m,t〉: either σm is the least
stabilizing sequence for M on Wj with t being convergence point for F (i, ·) and
M(σm) = j (thus, Wψ

2〈j,m,t〉 = Wj) or Wψ
2〈j,m,t〉 = Y ∪ S for some S ∈ I. Hence,

(e) holds.
This completes the proof of the claim. Note that either all ψ-grammars 2〈j, m, t〉

which follow the otherwise clause in the definition are grammars for N, or all of
these ψ-grammars are for finite sets. Thus, essentially Proposition 7 can be used
to show that ψ is Ke-numbering. Using part (a) and (e) of the claim, prudent
learning of TxtEx(M) follows easily as, on input σ, a learner can search for the
least t and m such that the following two conditions hold:

– M(σm) = M(σmτ) for all τ such that |τ | ≤ |σ| and τ ∈ Seg(content(σ)),
– for all t′ such that t ≤ t′ ≤ |σ|, F (M(σm), t′) = σm.

If t and m are found, then the learner outputs 2〈M(σm), m, t〉, else the learner
outputs 0. Note that learner only uses grammars of form 2i. It is easy to verify
that M learns all languages of form Wψ

2〈j,m,t〉 (which, by part (a) of the above
claim, includes all languages TxtEx-identified by M). Thus, M is a prudent
learner. �

Similar proofs can be used to show that non U-shaped learning and conserva-
tiveness are not restrictive for Ke-numberings.

Theorem 21. TxtEx ⊆ NUShKeTxtEx.

Theorem 22. Every class which can be conservatively TxtEx learnt can be
conservatively learnt in some Ke-numbering.
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Remark 23. An iterative learner [26,27] does not remember its history, but
bases its conjecture on just the latest input and its previous conjecture. It can
be shown that F cannot be iteratively learnt in any Friedberg numbering. It is
open at present whether every iteratively TxtEx-learnable class can be learnt
iteratively in some Ke-numbering.

A learner is said to be consistent [1,4,29] if for all σ, content(σ) ⊆ Wψ
M(σ), where

ψ is the numbering used for hypotheses space. There have been three different
versions of consistency studied in the literature. The notion considered here is
often referred to as TCons (see [29]) where the “T” indicates that the learner
has to be consistent on all total functions. RCons (see [19]) refers to consistent
learning when the learners are total, but may not be consistent on inputs outside
the class. In Cons learning (see [4]) the requirement is further relaxed to allow
the learners to be partial: the learner may be defined and consistent only on
inputs from the class being learnt. Theorem 24 can be extended to Cons too.
We do not yet know if the result extends to RCons.

Theorem 24. Every consistently learnable class can be learnt consistently in
some Friedberg numbering.

6 Learning with Respect to a Fixed Friedberg Numbering

We now investigate how powerful it is to learn with respect to one fixed Friedberg
numbering. While TxtEx = TxtExϕ for every acceptable numbering ϕ, there is
no optimal Friedberg numbering in this sense. This result can also be shown using
the result of [12] that for every Friedberg numbering η (for partial functions),
one can find an explanatory learnable class of functions, which is not explanatory
learnable using η as hypothesis space. Theorem 26 and Remark 27 below show
that there is an adversary Friedberg numbering ψ such that TxtExψ ⊆ TxtExη

for every universal numbering η. This is language learning counterpart of the
result from [12] that, for function learning, there exists a Friedberg numbering
in which only finite classes of recursive functions can be learnt.

Proposition 25. Let η be a Ke-numbering and L1, L2 be as in Remark 16. Then
either L1 /∈ TxtExη or L2 /∈ TxtExη. In particular, TxtEx �= TxtExη.

Theorem 26. There exists a Friedberg numbering ψ such that every class in
TxtExψ contains only finitely many infinite languages.

Remark 27. If L is a TxtEx-learnable class containing only finitely many in-
finite languages, then L is in TxtExη for every universal numbering η.

7 Behaviourally Correct Learning and Its Variants

TxtFEx-learning [9] denotes TxtBc-learning with the additional constraint
that the learner outputs only finitely many distinct conjectures on a text for an
input language from the class to be learnt.
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Theorem 28. TxtFEx ⊆ KeTxtBc.

Note that FrTxtBc = FrTxtFEx = FrTxtEx and KeTxtFEx = KeTxtEx.
As a corollary to Theorem 28, we obtain FrTxtBc ⊂ KeTxtBc.

Theorem 29. NUShKeTxtBc ⊂ KeTxtBc.

Theorem 30. NUShKeTxtBc ⊂ NUShTxtBc.

Acknowledgements. We thank S. Goncharov, C. Jockusch, B. Khoussainov,
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Abstract. We study the power of two models of faulty teachers in An-
gluin’s exact learning model. The first model we consider is learning from
equivalence and incomplete membership query oracles introduced by An-
gluin and Slonim [1]. In this model, the answers to a random subset of
the learner’s membership queries may be missing. The second model we
consider is random persistent classification noise in membership queries
introduced by Goldman et al. [2]. In this model, the answers to a random
subset of the learner’s membership queries are flipped.

We show that the incomplete membership query oracle is strictly
stronger than the membership query oracle with persistent noise un-
der the assumption that the problem of PAC learning parities with noise
is intractable.

We also show that under the standard cryptographic assumptions the
incomplete membership query oracle is strictly weaker than the perfect
membership query oracle. This strengthens the result of Simon [3] and
resolves an open question of Bshouty and Eiron [4].

Our techniques are based on ideas fromcoding theory and cryptography.

1 Introduction

Modeling and handling of faulty information is one of the most important and
well-studied topics in learning theory. In this paper we study two natural models
of a faulty teacher in Angluin’s exact model of learning. In the first model the
teacher answers “I don’t know” with some probability p to every membership
query of the learner. Furthermore, if the learner asks the same membership query
again the answer will be the same (in other words, it persists). This model was
introduced by Angluin and Slonim [1] and the faulty membership query oracle
is referred to as incomplete. Angluin and Slonim showed that monotone DNF
formulas are learnable even with incomplete membership queries for constant
p. This result was improved by Bshouty and Eiron who gave an algorithm that
can learn monotone DNF even when only an inverse polynomial fraction of
membership queries is answered [4]. Bshouty and Owshanko showed learnability
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of regular sets in this model [5], Goldman and Mathias showed learnability of k-
term DNF [6], and Chen showed learnability of some restricted classes of DNF in
this model [7]. Given a number of strong positive results for this model a natural
question to ask is whether this model is equivalent to learning with perfect
membership queries [4]. This question was addressed by Simon who answered
it in the negative for exact learning with proper equivalence queries (that is
the hypothesis in the equivalence query has to belong to the concept class that
is learned) [3]. In this work (Theorem 3) we give a more general version of this
result that also applies to unrestricted equivalence queries. Our result shows that
if there exists a concept not learnable in the exact model, then learning with
MQs is stronger then learning with incomplete MQs1. In particular, if one-way
functions exist, then incomplete MQs are strictly weaker than perfect ones.

The other model of a faulty teacher we study is random persistent noise in
membership queries defined by Goldman, Kearns and Schapire [2]. In this model,
the teacher flips the label of the answer to every membership query with some
probability p. As in the incomplete MQ model, the answers persist. It is easy to
see that learning is this model is at least as hard as learning in the incomplete
MQ model. Among the few techniques that manage to exploit noisy MQs is the
result of Goldman et al. who prove that certain classes of read-once formulas
are exactly learnable in this model [2]. It is also not hard to see that concept
classes that are exactly learnable using Kushilevitz-Mansour algorithm [8] can
be learned from noisy MQs by using noise tolerant versions of the Kushilevitz-
Mansour algorithm given by Jackson et al. [9] and Feldman [10]. These classes
include juntas and log n-depth decision trees [8]. Learnability of monotone DNF
in this model is an open problem [1].

In the main result of this work, we demonstrate that under the assumption
that parities are not learnable with random noise, the incomplete membership
query oracle is strictly stronger than the noisy one. Formally, we prove the
following result.

Theorem 1. If the problem of PAC learning parities from random and uniform
examples with random classification noise of rate η is intractable then there exists
a concept class C that for any polynomial p(n) is learnable with equivalence and
incomplete membership queries with error rate 1 − 1

p(n) , but not learnable from
equivalence and noisy membership queries with error rate η.

Learning of parities from noisy random and uniform examples (which we refer to
as the noisy parity problem) is a notoriously hard open problem [11]. Feldman et
al. show that this problem is central to PAC learning with respect to the uniform
distribution by reducing a number of other well-known open problems to it [12].
Furthermore, it is known to be equivalent to decoding of binary linear codes
generated randomly – a long-standing open problem in coding theory (cf. [10]).
For example the McEliece cryptosystem is based, among other assumptions, on
the hardness of this problem [13]. While the average-case hardness of decod-

1 The main idea of this simple result is similar to that of Simon and we include it
primarily for completeness.
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ing binary linear codes is unknown, a number of related worst-case problems
are known to be NP-hard (cf. [14,15]). Other evidence of its hardness includes
non-learnability in the statistical query model of Kearns [16] and hardness of
a generalized version of this problem that was shown by Regev [17]. The only
known non-trivial algorithm for learning parities with noise is a 2O(n/ log n)-time
algorithm by Blum et al. [18]. Our separation is optimal in the sense that it
separates learning with a rate of “I don’t know”s bounded by an inverse of a
polynomial from 1, from learning with the constant rate of noise (or even less
if under the corresponding strengthening of the assumption on the noisy parity
problem). This separation is based on a way to convert learning with mem-
bership queries to learning from random and uniform examples via a suitable
cryptographic primitive. We hope that this tool will find other applications.

1.1 Organization

We define the relevant models in Section 2. Separation of the incomplete mem-
bership query oracle from the usual one is presented in Section 3. Separation
of learning with incomplete membership query oracle from the noisy one is pre-
sented in Section 4.

2 Preliminaries

The exact learning model was proposed by Angluin [19]. In her model, a learning
algorithm is trying to identify a target concept c : X → {0, 1} in concept class C.
X is called the instance space and in this work we will assume X = {0, 1}n. The
learning algorithm has access to a membership oracle MQ and an equivalence
oracle EQ. On a query to the MQ oracle, the learning algorithm submits a point
x ∈ X and is given the value of c(x). On a query to EQ oracle, the algorithm
submits an efficiently evaluable hypothesis h. If h ≡ c, then the response YES is
returned. Otherwise, x ∈ X such that h(x) �= c(x) is returned. Note that x like
that can be chosen in an adversarial way.

Definition 1. We say that a concept class C is efficiently exactly learnable from
membership and equivalence queries if there exists a polynomial p(·, ·) and an
algorithm A with access to a membership oracle and an equivalence oracle, such
that for any target concept c, A outputs a hypothesis h in time p(size(c), n) with
h(x) = c(x) for all x ∈ X.

A variant of this model introduced by Angluin and Slonim [1] is exact learning
with an incomplete membership oracle of probability p IMQp and an equiva-
lence oracle EQ. This model addresses the fact that the teacher (modeled by
MQ) might not be omniscient. Whenever IMQp is queried, it will give one of
3 responses 0, 1, ⊥. Before it is used, IMQp flips a biased coin that comes up
heads with probability p for each point in the instance space X . If for a point
x, the coin comes up heads, it replies with ⊥ whenever x is queried in the future.
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Otherwise, it will reply with the correct value of c(x). The response ⊥ corre-
sponds to “I don’t know”. Note that it is possible that the oracle may not know
the answer to any question asked of it. Therefore we only require a learning
algorithm to succeed with high probability 1−Δ over the coin flips of IMQp for
some negligible Δ. Learnability in this model is defined as follows.

Definition 2. We say that a concept class C is exactly learnable ¿from equiv-
alence queries and incomplete membership queries of rate p and if there exists
an algorithm A such that for any target concept c ∈ C, any 0 < δ < 1 and any
p < 1, with probability 1 − Δ − δ over the coin flips of IMQp and A, A outputs
a hypothesis h equivalent to c. A is efficient if it runs in time polynomial in
size(c), n, 1

1−p and 1
δ .

For example, the algorithm for learning monotone DNF of Bshouty and Eiron
satisfies this definition [4]. We remark that this definition is different from the
definition of Angluin and Slonim as they define learnability in a more restricted
proper exact model and do not require polynomial dependence on 1

1−p [1].
Another model we explore in this paper is exact learning with a persistently

noisy membership oracle and equivalence oracle. Prior to use, the oracle NMQη

goes through the entire instance space and flips a biased coin that comes up heads
with probability η < 1

2 (the flips are independent). If the coin comes up heads
on a point x, then the oracle will always return ¬c(x) when queried for x. This
oracle was introduced by Goldman et al. in the context of exact identification
[2]. We refer to this model as the persistent noise model of exact learning.

Definition 3. We say that a concept class C is exactly learnable from equiva-
lence queries and persistently noisy membership if there exists an algorithm A
that for every c ∈ C, δ < 1 and η < 1

2 , with probability 1 − Δ − δ over the coin
flips of NMQη and A, A outputs a hypothesis h ≡ c. A is efficient if it runs in
time polynomial in size(c), n, 1

1−2η and 1
δ .

In addition to these models, we also consider malicious noise models introduced
by Angluin et al. [20]. In these models, the oracle has control over which queries
it corrupts but the total number of corruptions is limited. The learning algorithm
is allowed to run in time polynomial time in the number of corrupted queries
and the standard learning parameters.

3 Separation of Incomplete from Perfect MQ Models

In this section, we show that the incomplete model is strictly weaker than exact
learning, using a cryptographic assumption. An analogue of this result for the
proper exact learning was given Simon [3] and we include our version primarily
for completeness.

First, we present a result regarding the malicious incomplete MQ model.

Theorem 2. Suppose a concept class C = ∪nCn with concepts of size bounded
by s(n) is not learnable with a perfect membership oracle and equivalence oracle.
Then for error rate of ≥ s(n), the malicious incomplete model is strictly weaker
than the equivalence and query model.
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Proof. We construct a concept class D as follows. The class Dn+1 on {0, 1}n+1

contains elements dc parameterized by c ∈ C. Define dc(x, 0) = c(x), and
dc(x, 1) = φc(x), where φc is defined as follows. Split the input set {0, 1}n into
{0, 1}log s(n) × {0, 1}n−log s(n). Then define φc(i, j) = ci if j = 0n−log s(n) and
φc(i, j) = 0 if j �= 0n−log s(n), where ci is the ith bit in the representation of
c. Thus D is clearly learnable in the equivalence query and membership query
model using only membership queries on dc(i, 0n−log s(n), 1). However, in the ma-
licious incomplete noise model, with s(n) errors, one can simply hide the s(n)
outputs of the form dc(i, 0n−log s(n), 1), and the algorithm is reduced to learning
the original language in the usual equivalence and membership query model,
which we assumed was not learnable. Note that the algorithm is given no extra
time, since the concept size changed from s(n) to 2s(n) + O(1), and the time
allowed originally was polynomial in s(n).

A simple modification of this idea allows us to separate the random incomplete
membership query model from the usual exact learning model.

Theorem 3. Suppose a concept class C = ∪nCn is hard to exactly learn. For any
polynomial p(n), we can construct a class F = ∪nFn that is exactly learnable,
but is not exactly learnable with probability 1 − δ from incomplete membership
oracle IMQ

1
p(n) and equivalence queries where δ = Ω(2−n).

Proof. Given a polynomial p(n), we design a concept class F = ∪nFn so that it
is easy to learn with membership queries alone but not with equivalence queries
and incomplete membership queries with probability 1

p(n) of failure, or, in the

above notation, the oracles EQ and IMQ
1

p(n) . Let C = ∪nCn be a concept class
that is not learnable in the exact model, with some polynomial bound s(n) on
the size of the descriptions of the hypotheses. Let c : {0, 1}n → {0, 1} be a
concept in c. Also let ci denote the ith bit of the description of c. We define F
in the following manner. A concept dc,u ∈ Fn+1 is defined by a concept c ∈ Cn

and data u = {ui,j}i∈[s(n)],j∈[t(n)], ui,j ∈ {0, 1}, satisfying the condition ci =⊕t(n)
j=1 ui,j , for some polynomial t(n) we’ll specify later. The concept dc,u maps

(x, 0) 	→ c(x), (x, 1) 	→ φu(x), where φu : {0, 1}n−1 → {0, 1} is defined as follows.
Partition {0, 1}n−1 = {0, 1}log s(n)×{0, 1}log t(n)×{0, 1}n−1−log s(n)t(n), and write
φu(i, j, k) instead of φu(x), where i, j, k are elements of each set in this product.
Let φu(i, j, k) = 0 if k �= 0n−log s(n)t(n), and φu(i, j, 0n−1−log s(n)t(n)) = ui,j .
For every possible u meeting these conditions, there is a corresponding concept
dc,u ∈ F .

This defines the concept class F . We will first prove that it can be learned
with membership queries alone, and then that it cannot be learned with equiv-
alence queries and incomplete membership queries with success probability ≤
1− 1

p(n) . To see the first statement, the algorithm makes membership queries on
(i, j, 0n−log s(n)t(n), 1) to find the values ui,j for all 1 ≤ i ≤ s(n) and 1 ≤ j ≤ t(n).
Then, by computing ci =

⊕t(n)
j=1 ui,j, the algorithm can easily learn the concept

c. This gives the algorithm an encoding of all the values of the target concept d
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on inputs of the form (x, 0), just by evaluating c. For inputs of the form (x, 1),
the algorithm just uses the value of u to compute this as well, as it is clearly
efficiently evaluatable, and u only has polynomial length.

To see why this cannot be efficiently learned with access to EQ and IMQ
1

p(n) ,
we’ll prove that learning in this model is equivalent to learning of C, which we
assumed to be hard. Let EQC be an equivalence query oracle for C, such that
with the responses of this oracle plus a membership oracle, the class C is hard
to learn. Suppose that an algorithm A is trying to learn the concept dc,u ∈ F .
Every time that A asks an equivalence query on some hypothesis h, we reason
as follows. If h(x, 0) �= dc,u(x, 0) for some value of x, we use EQC to tell us
which counter example y to use, giving it the function h(x, 0) as a hypothesis
for guessing c(x) := dc,u(x, 0), and returning (y, 0) to A. If A were to never
query membership (x, 1) for any x, we would be essentially done. This is because
without such queries, A’s behavior is exactly as if it were trying to learn C. Also
note the possibility that h(x, 0) = dc,u(x, 0) = c(x) for all x. In this case, then
A has learned c, so it is irrelevant what response we give at this point. However,
since C was hard to learn, this happens with low probability.

Unfortunately, however, A can indeed perform membership queries on (x, 1).
We will show, however, that with probability 1 − δ this gives, information-
theoretically, no information, where δ may be a constant or some function of
n (it may, in fact, be exponentially small, as will be evident from the defini-
tion of t(n) below). First note that querying (i, j, k, 1) with k �= 0n−log s(n)t(n)

provides no information, since it always returns 0 regardless of the concept. For
some fixed value of i, the probability that there does not exist j such that a
query of (i, j, 0n−log s(n)t(n), 1) is unavailable can be (lower) bounded by a Cher-
noff bound. Let Xj be the event that (i, j, 0n−log s(n)t(n), 1) is unavailable, which
happens with probability E[Xj ] = 1

p(n) . Let X =
∑t(n)

j=1 Xj , and note that we

just need X ≥ 1 for such a j to exist. Define t(n) = p(n)
(
1 + 3 log s(n)

δ

)
. By a

multiplicative Chernoff bound, we have

Pr [X < 1] = Pr
[
X <

1
p(n)

· t(n)(1 − (1 − p(n)
t(n)

))
]

≤ exp
(

− t(n)
2p(n)

(1 − p(n)
t(n)

)2
)

= exp
(

− 1
2p(n)t(n)

(t(n) − p(n))2
)

= exp

(
−

9 log s(n)
δ

2(1 + 3 log s(n)
δ )

)
≤ exp

(
− log

s(n)
δ

)
=

δ

s(n)

Thus, by a union bound over the s(n) values of i, there is a probability of at
most δ that there exists some i where all of the values ui,j are available to the
algorithm. If there is an unavailable ui,j for each i, since any proper subset of
the ui,j for fixed i can attain any possible values without constraint, there is
information-theoretically no information available from any membership query
of the form (x, 1), as desired. In other words, there are values for u that allow
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any value for the encoding of c that look identical to the algorithm A, so it can
gain no information about c from the values it reads.

Thus the information that A can gain when trying to learn F is entirely from,
except with probability δ, membership queries on (x, 0) (which give no more
information, and often less, than in the case of C) and equivalence queries that
are answered by the same oracle as for C. Thus hardness of learning C implies
hardness of learning F , with a loss of δ (which can be taken to be exponentially
small) in hardness.

This separation result is optimal in the following sense. For every concept class
that is efficiently learnable in the exact model with perfect MQ is also efficiently
exactly learnable with EQ and IMQ

1
p(n) for sufficiently large polynomial p. This

is true since for a low enough rate of “I don’t know”s, with high probability, the
learner will not encounter any of them in the answers to a polynomial number
of membership queries.

Corollary 1. If one-way functions exist, then learning from incomplete mem-
bership queries and equivalence queries is strictly harder than learning from
membership queries and equivalence queries.

Proof. Valiant observed that if one-way functions exist then polynomial size
circuits are hard to learn in the PAC model with membership queries [21]. This
implies that circuits are hard to learn with equivalence queries and membership
queries, which gives us the desired result by Theorem 3.

4 Separation of Incomplete from Noisy MQ Models

We will now show that learning with noisy membership queries is strictly weaker
than learning with incomplete membership queries. First note that if a concept
class is exactly learnable with noisy membership queries and equivalence queries,
then it can be learned with incomplete membership queries and equivalence
queries. This follows from the fact that NMQη can be simulated using IMQ2η

by returning the outcome of a fair coin whenever IMQ2η return “I don’t know”
and c(x) otherwise (and giving the same label if the same query is made).

We will now show that there exists a concept class that is learnable in the
incomplete model with an error rate of 1 − 1

poly(n) , but not in the noisy model
with any constant rate of noise, using additional cryptographic assumptions.
Specifically, we will assume that parities are not PAC learnable with respect to
the uniform distribution in the presence of random classification noise. We start
by providing several relevant definitions and key facts.

Definition 4. A noisy example oracle for a function f with respect to a distri-
bution D and noise rate η is the oracle that on each call, draws x according to
D, and returns 〈x, f(x)〉 with probability η and 〈x, ¬f(x)〉 with probability 1 − η.
We denote it by EXη

D(f).
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A parity function χa(x) for a vector a ∈ {0, 1}n is defined as χa(x) = a · x =∑
i xiyi (mod 2). We refer to the vector associated with a parity function as its

index. We denote the concept class of parity functions {χa | a ∈ {0, 1}n} by
PAR.

Definition 5. The noisy parity problem for noise rate η is the problem of finding
a given access to EXη

U(χa), where U is the uniform distribution.

It is well-known that learning a parity with respect to U in the PAC sense (that
is up to accuracy ε) is equivalent to finding its index (cf. [10]). Another simple
observation made by Blum et al. [11] is that the noisy parity problem is randomly
self-reducible. That is,

Lemma 1 ([11]). Assume that there exists an efficient algorithm that can solve
the noisy parity problem for noise rate η when the target parity belongs to subset
S where, |S|/2n ≥ 1/p(n) for some polynomial p. Then there exists an efficient
(randomized) algorithm that can solve the noisy parity problem for noise rate η.

Blum et al. also prove that if parities are not learnable efficiently then there
exist pseudo-random generators [11]. Namely they prove the following result.

Lemma 2 ([11]). Assume that there exists η such that noisy parity problem is
intractable for noise rate η and 1

1−H(η) ≤ p(n) for some polynomial p and binary
entropy function H. Then there exist pseudo-random generators.

In particular, by the result of Goldreich et al. intractability of the noisy parity
problem implies existence of pseudo-random function (PRF) families [22] that
will be a key part of our construction.

Definition 6. A function family Fk,n = {σz}z∈{0,1}k (where the key length is
taken to be the security parameter and each σz is an efficiently evaluable function
from {0, 1}n to {0, 1}n) is a pseudorandom function family if any adversary
M (whose resources are bounded by a polynomial in n and k) can distinguish
between a function σz (where z ∈ {0, 1}k is chosen randomly and kept secret)
and a totally random function only with negligible probability. That is, for every
probabilistic polynomial time M with an oracle access to a function from {0, 1}n

to {0, 1}n and a negligible function ν(k),

|Pr[MFk,n(1n) = 1] − Pr[MHn(1n) = 1]| ≤ ν(k),

where Fk,n is the random variable produced by choosing σz ∈ Fk,n for a random
and uniform z ∈ {0, 1}k and Hn is the random variable produced by choosing
randomly and uniformly a function from {0, 1}n to {0, 1}n. The probability is
taken over the random choice of Fk,n (or Hk,n) and the coin flips of M .

The idea behind our separation is the following. It is easy to see that parities
are learnable from “incomplete random examples”, that is random examples
where the learner does not get the label with some probability p. This is true
since the learner can just ignore incomplete examples and only use the random
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examples with labels (which will still be random and uniform). Our goal is, in
a sense, to transform membership queries into random examples. This is done
by creating a function that maps x to σz(x), χa(σz(x)) where σz is a function
in a pseudorandom function family. Note that this function is not Boolean but
can can be converted to a Boolean one via a simple trick. The problem with this
construction is that in order to learn the given function, the learner would also
need to learn σz (which is not possible since σz is a pseudorandom function).
A way to avoid this problem is to have a encode an address in another part
of the domain at which one can find the parameter z (one cannot just have
a = z since then the adversary could potentially use information about χz to
“break” the pseudorandom function). One can use redundant encoding (or any
other encoding that tolerates erasures) to make sure that the incomplete MQ will
suffice to read σz(x) and z (at location a). We are now ready to prove Theorem
1 which we restate more precisely here.

Theorem 4 (= 1). If the noisy parity problem for noise rate η is intractable
and 1

1−H(η) is upper-bounded by some polynomial, then there exists a concept
class C that for any polynomial p(n) is learnable with equivalence and incomplete
membership queries with error rate 1 − 1

p(n) , but not learnable from equivalence
and noisy membership queries with error rate η.

Proof. We define the concept class C = ∪nCn as follows. Let Fn
2 , n

2
be a pseu-

dorandom family of functions whose existence is implied by Lemma 2. Let
a ∈ {0, 1} n

2 and χa be the corresponding parity on n
2 variables. For each a

and z ∈ {0, 1}n/2, define a function cz,a : {0, 1}n → {0, 1} as follows. We split
the input x into 4 parts b,y,j, and k where b ∈ {0, 1}, y ∈ {0, 1}n/2, k ∈ {0, 1}�

for � = log (n/2 + 1)� and j ∈ {0, 1}n/2−1−�. For b = 0 we encode a parity on
pseudorandomly permuted points and for b = 1 we encode z, the secret key to a
pseudorandom function family in a “hidden” location uncovering which requires
knowing a. Formally,

cz,a(0, y, j, k) =

⎧⎨
⎩

χa(σz(y)) if j = k = 0
k-th bit of σz(y) if 1 ≤ k ≤ n/2
0 otherwise

(2)

cz,a(1, y, j, k) =
{

k-th bit of z if y = a and 1 ≤ k ≤ n/2
0 otherwise

Lemma 3. The concept class C is learnable from IMQ1− 1
p(n) .

Proof. The learning algorithm chooses y ∈ {0, 1}
n
2 randomly and attempts to

get σz(y) by querying cz,a(0, y, 0, 0). Then for every 1 ≤ k ≤ n/2, it finds the k-
th bit of χa(σz(y)) by querying cz,a(0, y, j, k) for j = 0, 1, . . . , t where t is chosen
to be large enough to make sure that at least one of the queries is answered
with probability at least 1/n. Each query is answered with probability 1/p(n)
and therefore by Chernoff bound a polynomial t will suffice. This procedure
allows us to find σz(y) and χa(σz(y)) with probability at least 1

2p(n) . Repeating
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it polynomial in n and p(n) times, with high probability, yields values of χ(a)
on enough random and uniform points to recover a (via the usual Gaussian
elimination). Given a the algorithm can query cz,a(1, a, j, k) for every 1 ≤ k ≤
n/2 and a polynomial number j’s to recover each bit of z with high probability.
Given a and z the algorithm outputs cz,a (which is clearly an efficiently evaluable
concept).

Lemma 4. Under the assumption of Theorem 4, the concept class C is not learn-
able from EQ and NMQη.

Proof. We claim that if C can be efficiently learned from EQ and NMQη by an
algorithm L, then we can learn parities with noise η or distinguish a function in
our PRF family from a randomly chosen function. The latter would also imply
learning of parities with noise by Lemma 2 of Blum et al. [11]. Our distinguishing
test M with oracle access to a function σ : {0, 1}n/2 → {0, 1}n/2 works as follows.
Choose a random a ∈ {0, 1}n/2 and run the algorithm L for δ = 1/5. When L
asks for a membership query x = (b, y, j, k) for b = 0 we compute cz,a(0, y, j, k)
(as given by Equation 2) using σ in place of σz , and use randomness to simulate
the noise. If L asks for a membership query for b = 1 then, if y = a we stop and
output 1. Otherwise we reply with 0. If L asks for an equivalence query, then
we do one of two things depending on the hypothesis submitted. If L submits a
hypothesis h for which h(0, y, j, 1) equals to the first bit of σ(y) for at least 3/4
of randomly chosen y’s and j’s on a sample of polynomial size, then M stops and
outputs 1. Otherwise, we return the counterexample 〈0, y′, 0, 1, σ(y′)1〉 for a value
of y′ on which the submitted hypothesis is wrong. If L runs for more time than its
promised polynomial upper bound, we return 0. We now claim that M returns
1 with probability 1 − δ − Δ when it has oracle access to σz randomly chosen
from Fn

2 , n
2
. Note that the answers provided by the simulation are valid answers

for cz,a until a membership query with b = 1 and y = a is made at which point
the distinguisher returns 1. If such a query is never asked then, with probability
at least 1 − Δ − δ, L has to correctly learn the concept cz,a. Therefore M will
return 1 when L asks its final equivalence query, since σz(y)1 will be consistent
with the corresponding values of the hypothesis for all y’s. By the definition, Δ

is negligible and we have that Pr[MFn
2 , n

2 (1n/2) = 1] > 4/5 − Δ > 3/4.
Now let Hn

2
be the uniform distribution over functions ¿from {0, 1} n

2 to
{0, 1} n

2 and let σ′ be a function randomly chosen according to this distribu-
tion (that is a truly random function). For a randomly chosen σ′, L cannot
hope to discover the first bit of σ′(y) for 3/4 of all the values of y in poly-
nomial time. Thus to an equivalence query our simulator will return the value
of σ′(y)1 on a randomly chosen y where L does not predict σ′(y)1 correctly
(their fraction is at least 1/4). Therefore, in fact, each equivalence query can be
replaced by membership queries on (0, y, j, 1) on enough j’s to discover it with
arbitrarily high probability (by Chernoff bound taking a majority over a polyno-
mial in 1

1−2η number of point will suffice). We can therefore ignore equivalence
queries altogether. Noisy membership queries for the first part of the domain
(b = 0) can at best give us randomly chosen point σ′(y) and a value of χa(σ′(y))



104 V. Feldman, S. Shah, and N. Wadhwa

corrupted by noise of rate η. For a truly random σ′ this is equivalent to the
noisy parity problem. All membership queries to the second part of the domain
(that is b = 1) return value 0 unless y = a. If this happens with non-negligible
probability then L has effectively managed to find a and solved the instance
of the noisy parity problem we have generated with non-negligible probability
over the choice of a and the coin flips of M . By Lemma 1, this implies that
there is an efficient algorithm that solves the noisy parity problem for noise rate
η, contradicting our assumption. This implies that, with probability close to 1,
L cannot find a and hence M will not output 1 when used with σ′ oracle. In
particular, Pr[MHn

2 (1n/2) = 1] ≤ 1/4. It is easy to see that if L is efficient then
M is efficient and thus, we have obtained an efficient distinguisher for the PRF
family of functions Fn

2 , n
2
.

Theorem 4 can be also easily extended to PAC learning with respect to the
uniform distribution. That is, we can show that C cannot be learned even ap-
proximately from correct random and uniform examples and persistently noisy
membership queries.

Corollary 2. Under the assumptions of Theorem 4 there exists a concept class
learnable in the PAC model with incomplete membership queries model but not
in the PAC model with persistently noisy membership queries of rate η, both with
the uniform distribution.

Proof. The concept class C is learnable in the PAC model with incomplete
membership queries model, since this model is stronger than the equivalence
and incomplete membership query model. To see that it cannot be learned in
the PAC model with persistently noisy membership queries we observe that in
the proof of Theorem 4 we required that L produce a hypothesis h for which
h(0, y, j, 1) equals to the first bit of σ(y) for at least 3/4 of randomly chosen y’s
and j’s. There are 2n−�−1 ≥ 2n

2(n+2) points of this form and therefore by set-
ting ε = 1

8(n+1) we force the learning algorithm to have the desired consistency
condition. Simulating random examples that return correct labels is also easy
since with very high probability they do not reveal any information that cannot
be obtained using noisy membership queries. This is true since for a uniformly
chosen x = (b, y, j, k), the probability that j = 0 equals 2−n/2+�+1 and therefore
random examples will not reveal any labels. Similarly probability that y = a is
2−n/2 and therefore simulating random examples can be done without knowing
the bits of z.

Setting ε = 1
8(n+1) implies that the running time of the PAC learning algo-

rithm (and hence our distinguisher) will still be polynomial in n and therefore
we will reach the same contradiction. We also note that, by replacing the con-
sistency with only the first bit of σ(y) with consistency with a randomly chosen
bit, and slightly modifying the encoding of the information on the domain, it is
easy to produce a concept class C that is not even weakly PAC learnable ¿from
noisy membership queries (while still learnable from the incomplete MQs).
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5 Concluding Remarks

In this paper, we gave two separation results for exact learning with faulty mem-
bership queries. Perhaps the most interesting aspect of the second separation
result is a surprising connection to learning of parities in the PAC model with
noise. It appears to be the first result that is based on the intractability of the
noisy parity problem. An interesting related question is whether this assumption
can be replaced by a more general complexity theoretic assumption.
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Abstract. We provide upper bounds for the Vapnik-Chervonenkis di-
mension of concept classes parameterized by real numbers whose mem-
bership tests are programs described by bounded-depth arithmetic net-
works. Our upper bounds are of the kind O(k2d2), where d is the depth of
the network (representing the parallel running time) and k is the number
of parameters needed to codify the concept. This bound becomes O(k2d)
when membership tests are described by Boolean-arithmetic circuits. As
a consequence we conclude that families of concepts classes having par-
allel polynomial time algorithms expressing their membership tests have
polynomial VC dimension.

Keywords: Concept learning, Vapnik-Chervonenkis dimension, Milnor-
Thom bounds, parallel computation, formula size.

1 Introduction

We deal with general concept classes whose concepts and instances are rep-
resented by tuples of real numbers. For such a concept class C, let Ck,n be C
restricted to concepts represented by k real values and instances represented by
n real values. Following [9], the membership test of a concept class C over do-
main X takes as input a concept C ∈ C and an instance x ∈ X , and returns the
Boolean value ”x ∈ C”. The membership test of a concept class can be thought
of in two common ways: either as a formula, or as an algorithm taking as in-
put representations of a concept and an instance, and evaluating to the Boolean
value indicating membership.

Throughout this paper, the membership test for a concept class Ck,n is as-
sumed to be expressed as a parallel algorithm Nk,n taking k + n real inputs,
representing a concept C ∈ IRk and an instance x ∈ X = IRn, which uses exact
real arithmetic and returns the truth value x ∈ C.

We seek general conditions on parallel algorithms Nk,n that guarantee that
V C dimension of Ck,n be polynomial in k and n. This approach follows the
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same pattern as the work by Goldberg and Jerrum ([9]), who exhibit sufficient
conditions on the size of formulas in the first order theory of the real numbers
Φk,n, and on the sequential running time of algorithms Nk,n to define a class of
polynomial VC dimension in k and n.

In this same spirit the seminal paper by Karpinski and Macintyre ([11]) de-
serves special mention: here polynomial bounds on the VC dimension of sig-
moidal networks, and networks with general Pfaffian activation functions, are
derived.

For classes defined by algorithms that are allowed to perform conditional state-
ments (conditioned on equality and inequality of real values) and the standard
arithmetic operations +, −, ∗, /, we prove the following results.

– For a hierarchy of concept classes Ck,n, defined by algorithms Nk,n which
run in ”parallel time” d = d(k, n) the VC dimension of Ck,n is at most
O(k(k + n)d2). In particular, if k ≥ n, then the VC dimension of Ck,n is at
most O(k2d2).

– For a hierarchy of concept classes Ck,n, defined by algorithms Nk,n which
run in ”parallel time” polynomial in k and n, the VC dimension of Ck,n is
also polynomial in k and n.

Note that there are many examples of boolean formulas of the first order the-
ory of real numbers that can be described with short parallel complexity but
large sequential representation (see for instance [7] for examples coming from
elimination theory). On the contrary there are also many cases of formulas rep-
resented by algebraic computation trees ([3],[16]), straight-line programs ([1],[2],
linear search programs ([12]) or Turing machines over the field of real numbers
([5] and [4]) that cannot be efficiently parallelized - in poly-logarithmic depth-
by arithmetic networks, as it is shown in [15]. We must remark that in these last
cases our results remains meaningless.

The paper is organized as follows. In Section 2 we present some known results
on the VC dimension of formulas and sequential programs. Section 3 describes in
detail the parallel model of computation given by arithmetic networks. In Section
4 we study the formula size of arithmetic networks. Section 5 contains the proof
of our main results. Finally in Sections 6 and 7 we analyze the optimality of our
upper bounds.

2 Known Results on the VC Dimension of Formulas and
Sequential Algorithms

The following definition of VC dimension is standard. See for instance [21].

Definition 1. Le F be a class of subsets of a set X. We say that F shatters a
set A ⊂ X if for every subset E ⊂ A there exists S ∈ F such that E = S ∩ A.
The VC dimension of F is the cardinality of the largest set that is shattered by
F .
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Following familiar approaches, we deal with concept classes Ck,n such that con-
cepts are represented by k real numbers, w = (w1, . . . , wk), instances are rep-
resented by n real numbers, x = (x1, . . . , xn), and the membership test to the
family Ck,n is expressed either by a formula Φk,n(w, x) or by a program Nk,n

taking as inputs the pair concept/instance (w, x) and returning the value 1 if ”x
belongs to the concept represented by w” and 0 otherwise.

In both situations, we can think of Φk,n or Nk,n as a function from IRk+n to
{0, 1}. So for each concept w, define:

Cw := {x ∈ IRn : Φk,n(w, x) = 1}, (1)

in case the membership test is expressed by formula Φk,n or

Cw := {x ∈ IRn : Nk,n(w, x) = 1}, (2)

in the case membership test is expressed by a program Nk,n.
The objective is to obtain an upper bound on the VC dimension of the col-

lection of sets
Ck,n = {Cw : w ∈ IRk}. (3)

Now assume that formula Φk,n is a Boolean combination of s atomic formulas,
each of them being of one of the following forms:

τi(w, x) > 0 (4)

or
τi(w, x) = 0 (5)

where {τi(w, x)}1≤i≤s are infinitely differentiable functions from IRk+n to IR.
Next, make the following assumptions about the functions τi. Let α1, . . . , αv ∈
IRn. Form the sv functions τi(w, αj) from IRk to IR. Choose Θ1, . . . , Θr among
these, and let

Θ : IRk → IRr (6)

be defined by
Θ(w) := (Θ1(w), . . . , Θr(w)) (7)

Assume there is a bound B independent of the αi, r and the ε1, . . . , εr such
that if Θ−1(ε1, . . . , εr) is an (k − r)-dimensional C∞- sub-manifold of IRk then
Θ−1(ε1, . . . , εr) has at most B connected components.

With the above set-up, the following result is proved in [11].

Theorem 2. The VC dimension V of a family of concepts Ck,n whose mem-
bership test can be expressed by a formula Φk,n satisfying the above conditions
satisfies:

V ≤ 2log2B + 2klog2(2es) (8)

Using the classical result by Milnor ([13]), Thom([20]), Oleinik and Petrovsky
([18], [17]) and also Warren ([22]) we have:
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Lemma 3. Assume Θ1, . . . , Θr are polynomials in k variables with degree at
most d and Θ−1(ε1, . . . , εr) is an (k − r)-dimensional C∞- submanifold of IRk.
Then, the preimage Θ−1(ε1, . . . , εr), has at most B connected components, where

B ≤ (2d)k (9)

Now we can derive the following results proved in [9].

Theorem 4 ([9], Theorem 2.2). Suppose Ck,n is a class of concepts whose
membership test can be expressed by a formula Φk,n involving a total of s poly-
nomial equalities and inequalities, where each polynomial has degree no larger
than d. Then the VC dimension V of Ck,n satisfies

V ≤ 2klog2(4eds) (10)

Theorem 5 ([9], Theorem 2.3). Suppose Ck,n is a class of concepts whose
membership test can be expressed by an algebraic computation tree Tk,n of height
bounded by t = t(k, n) (representing sequential time). Then the VC dimension
V of Ck,n is V = O(kt).

Remark 6. Theorem 4 is a direct consequence of Theorem 2 and Lemma 3. The-
orem 5 follows from Theorem 4 and the fact, proven in [3], that the set accepted
by an algebraic computation tree of height bounded by t can be expressed by
a formula of the first order theory of real numbers having at most t2t atomic
predicates, where each predicate is a polynomial (in)equality of degree bounded
by 2t.

3 Arithmetic Networks

Our model of parallel computation is that of arithmetic networks. An arithmetic
network N is an arithmetic circuit (or straight line program) augmented with
a special kind of gates, called sign gates. A sign gate outputs 1 if their input is
greater or equal than 0 and 0 otherwise.

Definition 7. An arithmetic network N over IR is a directed acyclic graph
where each node has indegree 0, 1 or 2. Nodes with indegree 0 are labelled as
inputs or with elements of IR. Nodes with indegree 2 are labelled with a binary
operation of IR, that is +, −, ∗, /. Nodes of indegree 1 are sign gates.

To each gate v we inductively associate a function as follows.

– if v is an input or constant gate then fv is the label of v.
– if v has indegree 2 and v1 and v2 are the ancestors of v then fv = fv1opvfv2

where opv ∈ {+, −, ∗, /} is the label of v.
– if v is a sign gate then fv = sign(f ′

v) where v′ is the ancestor of v in the
graph.
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In particular the function associated to the output gate is the function com-
puted by the arithmetic network. We say that a subset W is accepted by an
arithmetic network N if the function computed by N is the characteristic func-
tion of W . In this case it is assumed that the output gate is a sign gate.

Given an arithmetic network N , the size s(N ) is the number of gates in N .
The depth d(N ) is the length of the longest path from some input gate to some
output gate. As usual, we shall refer to d(N ) as parallel time.

Remark 8. There is an alternative definition of arithmetic networks that com-
bines arithmetic gates with Boolean gates using an interface between them (see
[8]). This interface is given by two special gates, Boolean sign gates and selection
gates. For a fixed sign condition, ε ∈ {>, =, <}, the Boolean sign gate sign(f, ε)
outputs the Boolean value TRUE if fε0 is satisfied and FALSE otherwise.

The selection gates choose a particular input according to a Boolean instance.
They have associated a function

sel(f, g, b)

where f, g ∈ IR and b ∈ {TRUE, FALSE}, defined by

sel(f, g, b) = f

if the Boolean value b = TRUE and

sel(f, g, b) = g

otherwise.
Arithmetic networks with arithmetic operations and sign gates as described

in Definition 7 are able to simulate arithmetic networks with Boolean sign gates
and selection gates, defining equivalent computation models.

Remark 9. If L is any language and φ is a quantifier free L formula, the size of
φ is the number of atomic predicates it contains. Observe that the combination
of arithmetic gates with sign gates may increase the number of polynomials
involved in the computation (the formula size) up to a number which is doubly
exponential in the depth (parallel time). This is not strange: if d is parallel time,
sequential time could be, in the worst case, t = 2d. On the other hand, if t
is sequential time the number of polynomials appearing in the formula, could
be at worst 2t. This last consideration is implicit in the proof of [9], Theorem
2.3. Accordingly, we see that, using this straightforward argument, the best we
can expect either from [9], Theorem 2.2 and Theorem 2.3, is an O(k2d) upper
bound for the VC dimension of concept classes Ck,n whose membership test is
represented by an algorithm Nk,n working within parallel time d = d(n, k).

Example 10. An example of the feature pointed out in Remark 9 can be con-
structed as follows. Consider an arithmetic network N (l) expressing the mem-
bership to a concept class C(l) in which concepts can be represented by three real
numbers {wi}1≤i≤3 and instances are represented by two real numbers (x, y) as
indicated below.
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– (1) The input gates of N (l) are the variables x, y, w1, w2, w3.

– (2) Compute the set of 32l powers {pi}i given by

pi = wi
1, (11)

p2l+i = wi
2, (12)

and
p2l+1+i = wi

3, (13)

for 1 ≤ i ≤ 2l.
By elementary results of algebraic complexity theory this step can be com-
pleted by an arithmetic network of size O(2l) and depth O(l).

– (3) Compute the polynomials

gi(x, y, w1, w2, w3) = x + y − pi. (14)

This can be done by an arithmetic network having constant depth and size
O(2l). Note that the degree of the polynomial gi is at most 2l.

– (4) In constant depth and size O(2l), build 2l gates v0
i , 1 ≤ i ≤ 2l, as follows:

the output fv0
i

is the polynomial g3i−2, when g3i = 0, or g3i−1, when g3i 	= 0.

– (5)Within depth l + 1 and size 2l+1 − 1, add product gates vi
1, · · · , vi

2l−i+1

where
fvi

k
= fvi−1

2k−1
∗ fvi−1

2k
. (15)

In this latter definition, the superscript index i indicates the depth level and
ranges in 1...l + 1, and the subscript index k indicates the gate number at
level i; moreover k ranges in 1...2l−i+1.

– (6) Finally, add an output gate v whose output is given by

fv = sign(fvl+1
1

). (16)

Now, note that the membership test to the class C(l) can be expressed by a
formula Φ(l) = Φ(l)(w1, w2, w3, x, y) defined by

Φ(l) = (g3 = 0, g6 = 0, . . . , g32l = 0, g1g4 · · · g32l−2 ≥ 0) ∨ ... (17)

... ∨ (g3 	= 0, g6 	= 0, . . . , g3.2l 	= 0, g2g5 · · · g32l−1 ≥ 0) (18)

Indeed, we are involving all possible products

2l∏
i=1

fk(i), (19)
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where k(i) is either 3i−1 or 3i−2. This means that formula Φ(l) has size Θ(22l

)
in 5 free variables with polynomials of degree at most 2l. Note also that network
N (l) has depth O(l).

If we apply directly Theorem 4 we obtain an upper bound for the VC dimen-
sion of C(l) of the kind O(2l).

However, a finer argument provides a better relation between depth and for-
mula size.

Proposition 11. The class C(l) has formula size 2O(l) and VC-dimension O(l).

Proof. Let us observe that formula Φ(l) can be given as a finite disjunction

Φ(l) =
∨
i

(Φi,1(l) ∧ Φi,2(l)), (20)

where Φi,1(l) is a sign assignment to the polynomials g3, ..., g32l , and Φi,2(l) is

given by the condition
∏2l

i=1 gk(i) ≥ 0, where the selection of gk(i) depends on
g3i. Now using Lemma 12 below we see that the number of non-empty sign
assignments to the polynomials g3, ..., g3.2l is of the order (1 + D)5, where

D =
∑

deg(g3i) = 2O(l).

This implies that Φ(l) has size 2O(l). Since the degree of the polynomials is at
most 2l we obtain an upper bound for the VC-dimension of C(l) of the kind O(l).

4 Formula Size of Arithmetic Networks

Throughout this section we are interested in upper bounds on the minimum size
of formulas Φk,n expressing membership test to concept classes Ck,n. We shall
also refer to this minimum as the formula size of the class Ck,n. Bounds on the
formula size, combined with Theorem 2 and Lemma 3, are the key point in the
proof of our results.

A result that we will use when analyzing the formula size of concept classes
is an upper bound on the number of consistent sign assignments to a set of
multivariate polynomials. A sign assignment to polynomial f is one of the
(in)equalities

f > 0 orf = 0 orf < 0.

A sign assignment to a set of s polynomials is consistent if all s (in)equalities can
be satisfied simultaneously by some assignment of real numbers to the variables.
We substitute the commonly used bound due to Warren ([22]) by another one
used in algebraic complexity theory. This bound can be found, for instance, in
[10] and is stated as follows.

Lemma 12 ([10]). Let F be a finite family of n-variate polynomials having real
coefficients. Let D be the sum of the degrees of the polynomials in the family.
Then the number of consistent sign assignments to polynomials of the family F
is at most DO(n).
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Lemma 13. Let Ck,n be a family of concept classes whose membership test can
be expressed by a family of arithmetic networks Nk,n having k + n real variables
representing the concept and the instance and depth d = d(k, n). Then, the mem-
bership test to Ck,n can be expressed by a family of formulas Φk,n in k + n free
variables having the following properties.

(1) Formula Φk,n has size at most 2O((k+n)d2)).

(2) The polynomials in Φk,n have degree at most 2d.

Proof. We transform Nk,n into a formula Φk,n having the desired properties. Let
d = d(k, n) be the parallel time of Nk,n. Let

{sign(i, 1), . . . , sign(i, li)}

be the collection of sign gates of the network Nk,n whose depth is i ≤ d =
d(k, n) (here we are not considering the parts of the network that do not affect
the output, i. e. having no path to the output unit). Now, for each pair (i, j),
1 ≤ j ≤ li, let yi,j be the function of (x1, ..., xn, w1, ..., wk) that the sign gate
sign(i, j) receives as input.

Since the indegree of the gates is bounded by 2 it easily follows by induction
that yi,j is a piecewise rational function of (x1, ..., xn, w1, ..., wk) of formal degree
bounded by 2i and, at level i the number li is bounded above by 2d−i.

Now, for each sign assignment ε = (εi,j) ∈ {>, =, <, }
∑

1≤i≤d li let Φε be the
formula:

Φε =
∧

1≤i≤d,1≤j≤li

(yi,jεi,j0), (21)

and observe that
Φε =

∧
1≤i≤d

Φεi (22)

where
Φεi =

∧
1≤j≤li

(yi,jεi,j0) (23)

Claim 1. For every ε ∈ {>, =, <, }
∑

1≤i≤d li there are rational functions ri,j of
(x1, ..., x, w1, ..., wn) of degree bounded by 2i such that formula Φε is equivalent
to the formula ∧

1≤i≤d,1≤j≤li

(ri,jεi,j0) (24)

Proof. The proof is by finite induction on the number of conjunctions k in Equa-
tion 22: if k = 1, the ancestors of gate sgn(1, j) are arithmetic gates computed
by an arithmetic circuit (i.e. an arithmetic network without sign gates) of depth
≤ 1 and the result trivially follows. Assume now that

∧
1≤i≤k−1 Φεi satisfies the

required condition. In this case the result follows by noting that the role played
by sign gates which are ancestors of some sign gate (k, j), 1 ≤ j ≤ lk, on inputs
satisfying formula

∧
1≤i≤k−1 Φεi is superfluous.
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In what follows formula in Equation 24 will be also denoted by Φε. Notice that
the set of inputs (x1, ..., xn, w1, ..., wk) accepted by the arithmetic network Nk,n

can be described by a disjunction of some of the formulae Φε. Hence, the proof
of Lemma 13 follows from the degree bounds of Claim 1 and Lemma 12 if we
show the following.

Lemma 14. The number of tuples ε such that formula Φε represents a consistent
sign assignment is bounded by 2O((k+n)d2).

Proof. To show this assertion we proceed again by finite induction on the num-
ber of conjunctions k in Equation 22. Since l1 ≤ 2d−1 and the degree of rational
functions r1,j is bounded by 2, we conclude from Claim 1 and Lemma 12 that
there are at most 2O((n+k)d) values ε1 ∈ {>, =, <}l1 such that formula Φε1 rep-
resents a consistent sign assignment.

From Claim 1, each consistent sign assignment ε1 for the l1 rational func-
tions r1,j determines specific rational functions {r2,j}1≤j≤l2 in the variables
(x1, ..., xn, w1, ..., wk) as inputs for the sign gates at depth level 2. Since the
number of these gates l2 ≤ 2d−2 and the degree is bounded by 22, we conclude,
applying Lemma 12, that for each l1-tuple ε1 ∈ {>, =, <}l1 such that Φε1 rep-
resents a consistent assignment, there are at most 2O(n+k)d sign assignments
ε2 ∈ {>, =, <}l2} such that Φε2 is consistent. Hence we see that the number
of pairs (ε1, ε2) such that Φε1

∧
Φε2 represents a consistent sign assignment is

bounded by
2O((n+k)d)2O(n+k)d.

Iterating h times this argument, each (l1 + · · · + lh−1) − tuple

(ε1, ..., εh−1) ∈ {>, =, <}
∑

1≤i≤h−1 li

such that the formula

Φε1

∧
· · ·

∧
Φεh−1

represents a consistent sign assignment determines a specific set of rational func-
tions {rh,j}1≤j≤lh in the variables (x1, ..., xn, w1, ..., wk) as input for the sign
gates sign(h, j) at depth level h. Since the number of these gates lh ≤ 2d−h

and the degree is bounded by 2h, we conclude, applying Lemma 12, that for
each satisfiable (l1 + · · ·+ lh−1)-tuple as above there are at most 2O(n+k)d tuples
εh ∈ {>, =, <}lh} such that Φεh

represents a consistent sign assignment.
Finally, one gets that the number of tuples

(ε1, ..., εh) ∈ {>, =, <}
∑

1≤i≤h li

such that Φε1

∧
· · ·

∧
Φεh

represents a consistent sign assignment is bounded by
∏

1≤i≤h

2O((n+k)d) = 2O((n+k)dh)

Setting h = d finishes the proof.
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5 Upper Bounds on the VC Dimension of Arithmetic
Networks

Throughout this section we give precise statements and proofs of our results.

Theorem 15. Let Ck,n a family of concept classes whose membership test can
be expressed by arithmetic networks Nk,n having depth d = d(k, n). Then the VC
dimension V of Ck,n is at most

V = O(k(k + n)d2) (25)

In particular, if k ≥ n, then the VC dimension of Ck,n is at most O(k2d2).

Proof. Let Ck,n be a family concept class whose membership test can be defined
by arithmetic networks Nk,n with depth d = d(k, n). According to Lemma 13
the formula size s of the concept class Ck,n is

s = 2O((n+k)d2) (26)

Again from Lemma 13 the degree of the polynomials involved in the descrip-
tion of Nk,n is bounded by 2d hence, applying Lemma 3 we see that the log2B
term in Theorem 2 satisfies

log2B ≤ k(d + 1). (27)

From equation 26 the second operand in Theorem 2 is

2klog2(2es) = O(k(n + k)d2), (28)

and the theorem follows.

Corollary 16. For a family of concept classes Ck,n, whose membership test can
be defined by arithmetic networks Nk,n with depth polynomial in k and n, the
VC dimension of Ck,n is also polynomial in k and n.

6 Analysis of the d2 Factor

Throughout this section we analyze the factor d2 in Theorem 15. We give some
conditions that allow an upper bound on VC dimension of the kind O(k2d). To
this end we introduce the following notion which is motivated by Example 10.

Definition 17. An arithmetic network N is called a Boolean-arithmetic circuit
if it is built from

– arithmetic gates +, −, ∗, /,
– Boolean gates (∧, ∨, ¬),
– and Boolean sign gates sign(f, ε) as described in Remark 8.

Remark 18. Note that if we add selection gates, according to Remark 8, we
recover the devices described in Definition 7.
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We state the following result that bounds the formula size of Boolean-arithmetic
circuits.

Lemma 19. Let Ck,n be a family of concept classes whose membership test can
be expressed by a family of Boolean-arithmetic circuits Nk,n having k + n real
variables representing the concept and the instance and depth d = d(k, n). Then,
the membership test to Ck,n can be expressed by a family of formulas Φk,n in
k + n free variables having the following properties.

(1) Formula Φk,n has size at most 2O((k+n)d)).

(2) The polynomials in Φk,n have degree at most 2d.

Proof. Since all gates have indegree at most 2, the size of Nk,n is bounded by
2d+1. The total number of Boolean sign gates h ≤ 2d+1. Enumerate the Boolean
sign gates sign(fi, εi), where εi ∈ {>, =, <}. Note that for 1 ≤ i ≤ h, fi must
be the output of an arithmetic gate.

Since all ancestors of a Boolean sign gate are arithmetic gates, fi are computed
by an arithmetic circuit of depth ≤ d. This means that fi is a rational function
of degree deg(fi) ≤ 2d.

Observe that a Boolean sign gate is ancestor of Boolean gates, hence the subset
of IRk+n accepted by the Boolean-arithmetic circuit Nk,n can be described by a
formula:

Φk,n =
∨
j∈S

Φj (29)

S finite , where Φj represents a sign assignment on rational functions in the
family {fi}1≤i≤h.

Now, note that
∑

1≤i≤h

deg(fi) = 2O(d) (30)

Finally, using Lemma 12 we conclude that formula Φk,n has size at most

2O(dn)

as wanted.

Combining Lemma 19 and Theorem 2 we conclude the following bound on the
VC dimension of Boolean-arithmetic circuits.

Theorem 20. Let Ck,n a family of concept classes whose membership test can
be expressed by Boolean-arithmetic circuits Nk,n having depth d = d(k, n). Then
the VC dimension V of Ck,n is at most

V = O(k(k + n)d) (31)

In particular, if k ≥ n, then the VC dimension of Ck,n is at most O(k2d).
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7 Analysis of the k(k + n) Factor

We have shown in previous Section that factor d2 is due to the presence of
selection gates or, in other words, due to the combination of arithmetic gates
with sign gates. To finish we investigate the component k(n + k) of our bound.

About this question, as a consequence of a construction in [9], one can show
the following.

Proposition 21. For every k, n ∈ IN+ there is an arithmetic network Nk,n with
depth n + k which defines a concept class Ck,n of VC dimension Ω(k(n + k)).

According to the previous proposition we can conclude that our upper bounds
are optimal ”modulo a square root”. We remark that this situation is the same
as when studying bounds on the VC dimension of sigmoidal and Pfaffian neural
networks where there is still a gap between the O(l4) upper bounds and the
O(l2) quadratic lower bounds in the number, l, of programable parameters.
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Abstract. We study the parameterized complexity of learning k-juntas
and some variations of juntas. We show the hardness of learning k-juntas
and subclasses of k-juntas in the PAC model by reductions from a W[2]-
complete problem. On the other hand, as a consequence of a more general
result we show that k-juntas are exactly learnable with improper equiv-
alence queries and access to a W[P] oracle.

Subject Classification: Learning theory, computational complexity.

1 Introduction

Efficient machine learning in the presence of irrelevant information is an impor-
tant issue in computational learning theory (see, e.g., [21]). This has motivated
the fundamental problem of learning k-juntas : let f be an unknown boolean
function defined on the domain {0, 1}n that depends only on an unknown subset
of at most k variables, where k � n. Such a boolean function f is referred to as a
k-junta, and the problem is whether this class of functions is efficiently learnable
(under different notions of learning). This is a natural parameterized learning
problem that calls for techniques from parameterized complexity.

Our study is motivated by the recent exciting work by Mossel, O’Donnell
and Servedio [22] and the article with open problems on k-juntas proposed by
Blum [4,3], drawing to our attention the connection between the learnability of
k-juntas and fixed parameter tractability. Notice that in the distribution-free
PAC model, an exhaustive search algorithm can learn k-juntas in time roughly
nk. For the uniform distribution, [22] have designed an algorithm for learning
k-juntas in time roughly n0.7·k. For the smaller class of monotone k-juntas they
even achieve a running time polynomial in n and 2k (for this class an algorithm
with a different running time is given in [8]). Further, for learning symmetric k-
juntas, Lipton et al. [20] have provided an algorithm with running-time roughly
n0.1·k and this bound has been subsequently improved to O(nk/ log k) in [18].
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Actually, natural parameters abound in the context of learning and several
other learning algorithms in the literature can be seen as parameterized learning
algorithms. We mention only two important further examples: Kushilevitz and
Mansour [19, Theorem 5.3] give an exact learning algorithm with membership
queries for boolean decision trees of depth d and n variables with F2-linear
functions at each node with running time polynomial in n and 2d. Blum and
Rudich [5] design an exact learning algorithm with (improper) equivalence and
membership queries for k-term DNFs which runs in time n2O(k).

Parameterized Complexity, introduced as an approach to coping with in-
tractability by Downey and Fellows in [11], is now a flourishing area of research
(see, e.g. the monographs [12,14]). Questions focussing on parameterized prob-
lems in computational learning have been first studied in [10]. Fixed parameter
tractability provides a notion of feasible computation less restrictive than poly-
nomial time. It provides a theoretical basis for the design of new algorithms
that are efficient and practically useful for small parameter values. We quickly
recall the rudiments of this theory relevant for the present paper. More details
(especially on the levels of the W-hierarchy) will be given in the next section
(see also [12,14]).

Computational problems often have inputs consisting of two or more parts
where some of these parts typically take only small values. For example, an input
instance of the vertex cover problem is (G, k), and the task is to determine if the
graph G has a vertex cover of size k. A similar example is the k-clique problem
where again an input instance is a pair (G, k) and the problem is to test if the
graph G has a clique of size k. For such problems an exhaustive search will take
time O(nk), where n is the number of vertices in G. However, a finer classification
is possible. The vertex cover problem has an 2knO(1) time algorithm, whereas no
algorithm is known for the k-clique problem of running time O(no(k)). Thus, if the
parameter k is such that k � n, then we have a faster algorithm for the k-vertex
cover problem than is known for the k-clique problem.

More generally, a parameterized decision problem is a pair (L, κ) where L ⊆
{0, 1}∗ and κ is a polynomial time computable function κ : {0, 1}∗ → N. We
call k = κ(x) the parameter value of the instance x. The problem (L, κ) is
fixed parameter tractable ((L, κ) ∈ FPT for short) if L is decidable by an fpt
algorithm, i.e., by an algorithm that runs in time g(κ(x))|x|O(1) for an arbitrary
computable function g. In particular, the k-vertex cover problem has an 2knO(1)

time algorithm, implying that it is fixed parameter tractable. On the other hand,
the k-clique problem is not known to be in FPT.

In their seminal work, Downey and Fellows [11,12] also developed a theory
of intractability for parameterized problems as a tool to classify parameterized
problems according to their computational hardness. The W-hierarchy consists
of the levels W [t], t ≥ 1, together with the two classes W[SAT] and W[P] and
we have the inclusions

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT] ⊆ W[P].

In this paper, we show that k-juntas and some subclasses of k-juntas are
proper PAC learnable in fixed parameter time with access to an oracle in the
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second level W[2] of the W-hierarchy. This bound is achieved by reducing the
parameterized consistency problem for k-juntas to the parameterized set cover
problem. In order to achieve proper learning in fixed parameter time, the learner
computes an optimal set cover with the help of a W[2] oracle. A similar approach
has been used by Haussler [15] to design an efficient PAC-learning algorithm
for k-monomials using O(ε−1(log(δ−1) + k log(n)(log(k) + log log(n)))) many
examples.

As a lower bound we prove that monotone k-monomials are not even PAC
learnable with k-juntas as hypotheses in randomized fixed parameter time un-
less W[2] has randomized FPT algorithms. The proof is an application of the
well-known technique introduced by Pitt and Valiant [23] to reduce a hard prob-
lem to the consistency problem for the hypothesis class. Further, we describe
a deterministic fpt algorithm that proper PAC learns k-monomials under the
uniform distribution.

We next consider the question of exactly learning k-juntas with only equiv-
alence queries. It turns out that k-juntas are learnable by a randomized fpt
algorithm with improper equivalence queries and access to a W[P] oracle. As a
consequence, k-juntas are also fpt PAC learnable with access to a W[P] oracle.
Actually, we prove a more general result: we consider the problem of learning
parameterized concept classes for which the membership of an assignment to a
given concept is decidable in FPT and show that these concept classes are ex-
actly learnable by a randomized fpt algorithm with equivalence queries and with
access to a W[P] oracle, provided that the Hamming weight is used as parame-
ter. Our learning algorithm uses a similar strategy as the algorithm designed by
Bshouty et al. [7] for exactly learning boolean circuits with equivalence queries
and with the help of an NP oracle.

The rest of the paper is organized as follows. In Section 2 we provide the
necessary notions and concepts and fix notation. Section 3 contains our results
on PAC learning and in Section 4 we prove the query-learning results.

2 Preliminaries

2.1 Parameterized Complexity

We fix the alphabet Σ = {0, 1}. The Hamming weight w(x) of a string x ∈ {0, 1}∗
is the number of 1’s in x. The cardinality of a finite set X is denoted by ‖X‖.

The key idea in quantifying parameterized hardness is the notion of the weft
of a boolean circuit [11]: We fix any constant l > 2. In a boolean circuit c we
say that a gate is large if it has fanin at least l. The weft of a boolean circuit (or
formula) c is the maximum number of large gates on any input to output path
in c. Thus, any CNF formula is a depth 2 and weft 2 circuit, whereas k-CNF
formulas (i.e. CNF formulas with at most k literals per clause) are circuits of
depth 2 and weft 1.

The following parameterized problem Weighted-Circuit-SAT (a weighted
version of the satisfiability problem for boolean circuits) is central to this the-
ory: Given a pair (c, k), where c is a boolean circuit (or formula) and k =
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κ(c, k) is the parameter, the problem is to decide if there is an input of ham-
ming weight k accepted by c. For a class C of circuits we denote the param-
eterized problem Weighted-Circuit-SAT restricted to circuits from C by
Weighted-Circuit-SAT(C).

In order to compare the complexity of parameterized problems we use the
fpt many-one and Turing reducibilities [11]. An fpt many-one reduction f from
a parameterized problem (L, κ) to a parameterized problem (L′, κ′) maps an
instance x for L to an equivalent instance f(x) for L′ (i.e., x ∈ L ⇔ f(x) ∈ L′),
where for a computable function g, f(x) can be computed in time g(κ(x))|x|O(1)

and κ′(f(x)) is bounded by g(κ(x)). The notion of an fpt Turing reduction where
the parameterized problem (L′, κ′) is used as an oracle is defined accordingly:
An fpt Turing reduction from a parameterized problem (L, κ) to a parameterized
problem (L′, κ′) is a deterministic algorithm M that for a computable function
g, decides L with the help of oracle L′ in time g(κ(x))|x|O(1) and asks only
queries y with κ′(y) ≤ g(κ(x)). Now we are ready to define the weft hierarchy
and the class XP [12,14].

– For each t ≥ 1, W[t] is the class of parameterized problems that for some
constant d are fpt many-one reducible to the weighted satisfiability problem
for boolean formulas of depth d and weft t.

– The class W[SAT] consists of parameterized problems that are fpt many-one
reducible to the weighted satisfiability problem for boolean formulas.

– W[P] is the class of parameterized problems fpt many-one reducible to the
weighted satisfiability problem for boolean circuits.

– For each k ∈ N, the kth slice of a parameterized problem (L, κ) is the lan-
guage Lk = {x ∈ L | κ(x) = k}. A parameterized problem (L, κ) belongs
to the class XP if for any k, the kth slice Lk of (L, κ) is in P. Note that
XP is a non-uniform class that even contains undecidable problems. There
is also a uniform version of XP that is more suitable for our purpose. A
parameterized problem (L, κ) belongs to the class uniform-XP if there is a
computable function f : N → N and an algorithm that, given x ∈ {0, 1}∗,
decides if x ∈ L in at most |x|f(κ(x)) + f(κ(x)) steps.

From these definitions it is easy to see that we have the following inclusion
chain:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT] ⊆ W[P] ⊆ uniform-XP ⊆ XP.

2.2 Parameterized Learnability

The Boolean constants false and true are identified with 0 and 1, and Bn denotes
the set of all Boolean functions f : {0, 1}n → {0, 1}. Elements x of {0, 1}n are
called assignments and any pair (x, b) with f(x) = b is called an example of f . A
variable xi is called relevant for f , if there is an assignment x with f(x) 
= f(x′),
where x′ is obtained from x by flipping the i-th bit.

In order to make our presentation concise, we only consider learning of concept
classes C ⊆ Bn for some fixed arity n. By abusing notation, we often identify a
concept f ∈ C with the set {x ∈ {0, 1}n | f(x) = 1}.
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A representation of concepts is a set R ⊆ {0, 1}∗ of encoded pairs 〈r, x〉. A
concept name r represents for each integer n ≥ 1 the concept

Rn(r) = {x ∈ {0, 1}n | 〈r, x〉 ∈ R}.

The concept class represented by R is C(R) =
⋃

n≥1 Cn(R) where Cn(R) =
{Rn(r) | r ∈ {0, 1}∗}.

A parameterization of a representation R of concepts is a polynomial-time
computable function κ : {0, 1}∗ → N. We call (R, κ) a parameterized representa-
tion of concepts and k = κ(r) the parameter value of the concept description r.
(R, κ) is said to be fpt evaluable if 〈r, x〉 ∈ R is decidable in time g(κ(r))p(|r|, |x|),
for some arbitrary computable function g and some polynomial p. For a pair of
integers k, s we denote by Rk,s the set {r ∈ {0, 1}s | κ(r) = k} of all representa-
tions r of size s having parameter value k.

The concept classes we consider in the present paper are the following.

– The class ∪n>0Bn of all boolean functions. We usually represent these con-
cepts by (binary encodings of) boolean circuits.

– The class Jk,n of k-juntas in Bn. If we represent k-juntas by boolean circuits
c, then we use the number k of input gates xi in c having fanout at least 1
as parameter. As in [1] we can also represent concepts in Jk,n by strings of
length n + 2k having at most k + 2k ones, where the first part is of length
n and contains exactly k ones (specifying the relevant variables) and the
second part consists of the full value table of the k-junta. We denote this
representation of k-juntas by J .

– Likewise, for the class Mk,n of k-monomials consisting of all conjunctions f
of at most k literals, we can represent f by a string of length n+k having at
most 2k ones, where the first n bits specify the set of relevant variables of f
(exactly as for k-juntas) and the last k bits indicate which of these variables
occur negated in f . Clearly, monotone k-juntas f ∈ mon-Jk,n and monotone
k-monomials f ∈ mon-Mk,n can be represented in a similar way.

The Hamming weight w(r) provides a natural parameterization of concept
classes Rn(r). In fact, if we use the representation J of k-juntas described above,
then this parameterization is equivalent to the usual one since for every string
r representing a k-junta it holds that k ≤ w(r) ≤ k + 2k. Further, it is easy to
see that all parameterized representations considered in this paper are fpt (even
polynomial-time) evaluable. W.r.t. the Hamming weight parameterization, no-
tice that Rk,s has size sO(k). Furthermore, the set Rk,s can be easily enumerated
in time sO(k). This motivates the following definition: a parameterized represen-
tation (R, κ) is XP-enumerable if the set Rk,s can be enumerated in time sO(k)

by a uniform algorithm.
Valiant’s model of probably approximately correct (PAC) learning [25] and

Angluin’s model of exact learning via queries [2] are two of the most well-studied
models in computational learning theory. In the parameterized setting, both
PAC-learning and exact learning with queries are defined in the standard way.
However, the presence of the fixed parameter allows a finer complexity classifi-
cation of learning problems.
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To define a parameterized version of exact learning with equivalence queries,
let (R, κ) and H be (parameterized) representations. An algorithm A exactly
learns (R, κ) using equivalence queries from H , if for all n ∈ N and all concept
names r,

1) A gets inputs n, s = |r| and k = κ(r).
2) A makes equivalence queries with respect to Rn(r), where the query is a

concept name h ∈ {0, 1}∗, and the answer is either “Yes” if Hn(h) = Rn(r)
or a counterexample x in the symmetric difference Hn(h)�Rn(r).

3) A outputs a concept name h ∈ {0, 1}∗ such that Hn(h) = Rn(r).

We say that A is an fpt EQ-learning algorithm if for each integer n ∈ N and
each target r the running time of A on input n, s = |r| and k = κ(r) is bounded
by g(k)p(n, s), for some computable function g and some polynomial p.

Next we define parameterized PAC-learning. Let (R, κ) and H be (parameter-
ized) representations. A (possibly randomized) algorithm A PAC-learns (R, κ)
using hypotheses from H , if for all n ∈ N , all concept names r and for all ε, δ > 0,

1) A gets inputs n, s = |r|, k = κ(r), ε and δ.
2) A gets random examples (x, b) of the concept Rn(r), where the strings x are

chosen independently according to some distribution Dn on {0, 1}n.
3) With probability at least 1 − δ, A outputs a concept name h ∈ {0, 1}∗ such

that the error
error(h) = Pr

x∈Dn

[x ∈ Rn(r)�Hn(h)]

of h with respect to the target r, where x is chosen according to Dn, is at
most ε.

A is an fpt algorithm if for each integer n ∈ N , each target r and for all ε, δ >
0, the running time of A is bounded by g(k)p(n, s, 1/ε, 1/δ), for an arbitrary
computable function g and a polynomial p. We say that (R, κ) is fpt PAC-
learnable with hypotheses from H , if there is an fpt algorithm A that PAC-learns
(R, κ) using hypotheses from H .

As usual, in distribution-free PAC-learning, the algorithm must succeed on any
unknown distribution, whereas in distribution-specific PAC-learning the learning
algorithm only works for a fixed distribution.

3 PAC Learning of k-Juntas

By the classical algorithm due to Haussler [15] (using the modification of War-
muth as described in [17, Chapter 2]), the class of k-monomials is PAC-learnable
in time poly(n, 1/ε, log(1/δ)) with k log(2/ε)-monomials as hypotheses and us-
ing O(ε−1(log(δ−1) + k log(n) log(ε−1))) many examples. The algorithm uses
the well-known greedy heuristic to approximate the set cover problem [16,9]. By
computing an optimal solution of the set cover problem, we can achieve proper
learning with k-monomials as hypotheses, though at the expense of access to a
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W[2] oracle. In the fixed parameterized setting, this can be extended to the class
of k-juntas as well as to monotone k-monomials and to monotone k-juntas.

We first show that the parameterized consistency problem (see Definition 1)
for (monotone) k-juntas and for (monotone) k-monomials is in W[2]. For this we
use the parameterized version of the set cover problem defined as follows. Given
a set U = {u1, . . . , um}, a family S = {S1, . . . , Sn} of subsets Si ⊆ U , and a
positive integer k (which is the parameter), is there a subset R ⊆ S of size k
whose union is U . It is well-known that this problem is W[2]-complete (see for
example the book [12]).

Definition 1. The parameterized consistency problem for a concept class C =⋃
n≥1 Cn, where Cn ⊆ Bn, is defined as follows. Given sets P and N of positive

and negative examples from {0, 1}n and a positive integer k (which is the param-
eter), does Cn contain a k-junta f which is consistent with P and N (meaning
that f(x) = 1 for all x ∈ P and f(x) = 0 for all x ∈ N).

Theorem 2. The parameterized consistency problem is in W[2] for the following
concept classes C =

⋃
n≥1 Cn:

1) for all k-juntas (i.e., Cn =
⋃n

k=0 Jk,n = Bn),
2) for monotone k-juntas (i.e., Cn =

⋃n
k=0 mon-Jk,n),

3) for k-monomials (i.e., Cn =
⋃n

k=0 Mk,n),
4) for monotone k-monomials (i.e., Cn =

⋃n
k=0 mon-Mk,n).

Moreover, in each case, a representation for a consistent k-junta f ∈ Cn can be
constructed (if it exists) in fixed parameter time relative to a W[2] oracle.

Proof. 1) Let (P, N, k) be an instance of the consistency problem for k-juntas.
We claim that there is a k-junta consistent with P and N if and only if there is
an index set I ⊆ [n] of size k such that

∀(a, b) ∈ P × N ∃i ∈ I : ai 
= bi. (1)

The forward implication is immediate. For the backward implication let I be a
size k index set fulfilling property (1) and consider the k-junta f defined by

f(x) =

{
1, there exists an a ∈ P s.t. for all indices i ∈ I : xi = ai,

0, otherwise.
(2)

Then it is clear that f(a) = 1 for all a ∈ P . Further, since by property (1) no as-
signment b ∈ N can agree with any a ∈ P on I, it follows that f is also consistent
with N . Thus we have shown that (P, N, k) is a positive instance of the consis-
tency problem for k-juntas if and only if the weft 2 formula

∧
(a,b)∈P×N

∨
ai �=bi

xi

has a satisfying assignment of weight k, implying that the consistency problem
for k-juntas is in W[2].

In order to construct a consistent k-junta with the help of a W[2] oracle in time
poly(2k, m, n), where m = ‖P ∪ N‖, note that there is also an easy reduction of
the parameterized consistency problem to the parameterized set cover problem.
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In fact, for each i ∈ [n] consider the subset Si = {(a, b) ∈ P × N | ai 
= bi} of
U = P × N . Then an index set I ⊆ [n] fulfills property (1) if and only if the
subfamily R = {Si | i ∈ I} covers U . Now observe that a set Si is contained in a
size k subfamily R ⊆ {S1, . . . , Sn} covering U if and only if the set U ′ = U \Si is
covered by some size k−1 subfamily of R′ = {S1 \Si, . . . , Sn \Si}. Thus, we can
successively construct a cover R of size k (if it exists) by using kn oracle calls to
the parameterized set cover problem. From R we immediately get an index set
I ⊆ [n] fulfilling property (1) and thus, a representation of the consistent k-junta
f defined by Equation (2) can be computed in fixed parameter time relative to
the parameterized set cover problem.

2) Similarly as above it follows that there is a monotone k-junta consistent
with P and N if and only if there is an index set I ⊆ [n] of size k fulfilling the
property

∀(a, b) ∈ P × N ∃i ∈ I : ai > bi. (3)

In this case, the monotone k-junta f derived from a size k index set I with
property (3) has the form

f(x) =

{
1, there exists an a ∈ P s.t. for all indices i ∈ I : xi ≥ ai,

0, otherwise.
(4)

Thus, there is some monotone k-junta which is consistent with P and N if and
only if the weft 2 formula

∧
(a,b)∈P×N

∨
ai>bi

xi has a satisfying assignment of
weight k, implying that also the consistency problem for monotone k-juntas is in
W[2]. Further, a consistent monotone k-junta can be constructed by computing
a size k solution for the set cover instance (U, {S1, . . . , Sn}), where U = P × N
and Si = {(a, b) ∈ U | ai > bi} for i = 1, . . . , n.

3) First observe that a monomial can only be consistent with a set P of positive
assignments if it does not depend on any variable xi such that P contains two
examples a and a′ with ai 
= a′

i. Let J = {i ∈ [n] | ∀a, a′ ∈ P : ai = a′
i} and

let a be an arbitrary but fixed positive example from P . Then there is some
k-monomial which is consistent with P and N if and only if there is an index
set I ⊆ J of size k fulfilling the property

∀b ∈ N ∃i ∈ I : ai 
= bi. (5)

Indeed, if I ⊆ J has property (5), then the monomial
∧

i∈I,ai=1 xi ∧
∧

i∈I,ai=0 x̄i

is consistent with P and N . Thus, some k-monomial is consistent with P and N
if and only if the weft 2 formula

∧
b∈N

∨
i∈J,ai �=bi

xi has a satisfying assignment
of weight k, implying that also the consistency problem for k-monomials is in
W[2]. Further, a consistent k-monomial can be constructed by computing a size k
solution for the set cover instance (N, {Si | i ∈ J}), where Si = {b ∈ N | ai 
= bi}
for i = 1, . . . , n.

4) The reduction is very similar to the previous one. Observe that a monotone
monomial can only be consistent with a set P of positive assignments if it does
not depend on any variable xi such that P contains an example a with ai = 0.
Let J = {i ∈ [n] | ∀a ∈ P : ai = 1}. Then there is some monotone k-monomial
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which is consistent with P and N if and only if there is an index set I ⊆ J of
size k fulfilling the property

∀b ∈ N ∃i ∈ I : bi = 0. (6)

Indeed, if I ⊆ J fulfills this property, then the monomial
∧

i∈I xi is consistent
with P and N . Thus, some k-monomial is consistent with P and N if and
only if the weft 2 formula

∧
b∈N

∨
i∈J xi has a satisfying assignment of weight k,

implying that also the consistency problem for monotone k-monomials is in W[2].
Further, a consistent monotone k-monomial can be constructed by computing a
size k solution for the set cover instance (N, {Si | i ∈ J}), where Si = {b ∈ N |
bi = 0} for i = 1, . . . , n. ��

Theorem 3. The class of k-juntas is fpt PAC-learnable with access to a W[2]
oracle and using k-juntas as hypotheses. The same holds for monotone k-juntas
as well as for k-monomials and monotone k-monomials.

Proof. We first consider the case of k-juntas and monotone k-juntas. As has been
observed in [1], the set of all k-juntas has size O(nk22k

) and hence it follows from
[6] that (monotone) k-juntas are proper PAC-learnable by an Occam algorithm
by using O(ε−1(log(δ−1)+2k +k log(n))) many examples. Further, observe that
using the algorithm described in the proof of Theorem 2, a (monotone) k-junta
consistent with the random training sample (P, N) can be constructed with the
help of a W[2] oracle in time poly(2k, m, n), where m = ‖P ∪ N‖.

For the case of (monotone) k-monomials we note that the variant of Haus-
sler’s algorithm that requests O(ε−1(log(δ−1) + k log(n))) many examples and
uses the parameterized set cover problem as an oracle to determine a consistent
(monotone) k-monomial learns this class in time poly(n, 1/ε, log(1/δ)). ��

In order to show that the W[2] oracle is indeed necessary we make use of the fol-
lowing hardness result that easily follows by transforming Haussler’s [15] reduc-
tion of the set cover problem to the consistency problem for monotone monomials
into the parameterized setting.

Lemma 4. Let C =
⋃

n≥1 Cn be a concept class where Cn contains all monotone
monomials over the variables x1, . . . , xn. Then the parameterized consistency
problem for C is hard for W[2].

Proof. Consider Haussler’s [15] reduction f that maps a set cover instance
U = {u1, . . . , um}, S = {S1, . . . , Sn} and k to the instance P = {1n}, N =
{b1, . . . , bm} and k, where the i-th bit of the negative example bj is 0 if and only
if uj ∈ Si. We claim that the following statements are equivalent:

– some k-junta is consistent with P and N ,
– U can be covered by a subfamily R ⊆ S of size k,
– some monotone k-monomial is consistent with P and N .

Suppose that some k-junta f ∈ Cn is consistent with the examples from P and
N . Let I be the index set of the relevant variables of f . Then by the choice
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of P = {1n}, each negative example bj differs from 1n in at least one of the k
positions from I. This means that for every j ∈ [m] there is some i ∈ I such that
the i-th bit of bj is 0 and, hence, uj ∈ Si. Thus, the union of all sets Si with
i ∈ I covers U .

Now suppose that U can be covered by a subfamily R = {Si | i ∈ I} for some
index set I ⊆ [n] of size k. Then for every j ∈ [m] there is some index i ∈ I such
that the i-th bit of bj is 0, implying that the monotone k-monomial

∧
i∈I xi is

false on all bj from N and true on 1n.
Since, by assumption, Cn contains all monotone monomials over the variables

x1, . . . , xn, this shows that f is an fpt many-one reduction of the parameterized
set cover problem (which is W[2]-complete) to the parameterized consistency
problem for C. ��

By combining Lemma 4 with Theorem 2 we immediately get the following com-
pleteness results.

Corollary 5. The parameterized consistency problem for the following concept
classes is complete for W[2]:

1) all k-juntas,
2) monotone k-juntas,
3) k-monomials,
4) monotone k-monomials.

Next we show that no concept class containing all monotone k-monomials is
fpt PAC-learnable with boolean circuits having at most k relevant variables as
hypotheses unless the second level of the W-hierarchy collapses to randomized
FPT (meaning that for any problem (L, κ) ∈ W[2] there is a randomized algo-
rithm that decides L in expected time g(κ(x))|x|O(1) for a computable function
g; see [13]).

Theorem 6. Monotone k-monomials are not fpt PAC-learnable with boolean
circuits having at most k relevant variables as hypotheses, unless W[2] is con-
tained in randomized FPT.

Proof. Assume that there exists a PAC-learning algorithm A for the set of mono-
tone k-monomials which runs in time g(k)poly(n, 1/ε, 1/δ) and outputs boolean
circuits with at most k relevant variables as hypotheses. We describe a random-
ized algorithm M which solves the parameterized set cover problem in fixed
parameter time.

On input a set U = {u1, . . . , um}, a family S = {S1, . . . , Sn} of subsets
Si ⊆ U , and a positive integer k, M first computes the corresponding instance
f(U, S, k) = (P, N, k) of the parameterized consistency problem as described
in the proof of Lemma 4. Then M runs the PAC-learning algorithm A with
confidence parameter δ = 1/4 and error parameter ε = 1/(‖N‖ + 2). For each
request for a random classified example, M randomly chooses an example from
P∪N and passes it to A along with its classification. After at most g(k)poly(n, m)
steps, A produces a boolean circuit computing some hypothesis h. Now M tries
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to determine the relevant variables of h as follows. Observe that if h depends on
at most k relevant variables, then for each relevant variable xi and for a uniformly
at random chosen assignment x ∈ {0, 1}n we have h(x) 
= h(x′) with probability
at least 2−k, where x′ is obtained from x by flipping the i-th bit. Thus, M can
detect the index set I of all relevant variables of h with probability ≥ 3/4 in time
poly(2k, n), provided that h indeed depends on at most k variables (otherwise, I
can be an arbitrary subset of [n] and M might fail to find any relevant variables).
Finally, M accepts if and only if ‖I‖ ≤ k and the monomial

∧
i∈I xi is consistent

with P and N .
Assume that (U, S, k) is a positive instance of the parameterized set cover

problem. Then, by the choice of δ and ε, A produces with probability at least
3/4 a k-junta h that is consistent with P and N . Now, using the properties
of the instance (P, N, k) described in the proof of Lemma 4, it follows that if
A is successful, then M finds with probability ≥ 3/4 a monotone k-monomial
consistent with P and N , implying that M accepts with probability ≥ 1/2.

On the other hand, it is clear that M will never accept a negative instance
(U, S, k). ��

Thus it is rather unlikely that the class of k-monomials (or any other concept
class considered in Theorem 3) is proper PAC-learnable in time g(k)poly(n). In
contrast, in the distribution-specific setting with respect to the uniform distri-
bution, proper PAC-learning can be achieved in fixed parameter time. For the
class of monotone k-juntas, this has already been shown by Mossel et al. [22].

Theorem 7. Under the uniform distribution, k-monomials are PAC-learnable
in deterministic fixed parameter time with k-monomials as hypotheses.

Proof. Let f be some k-monomial and for any i ∈ [n] consider the probability
pi = Pr[f(x) = xi] for a uniformly chosen assignment x ∈ {0, 1}n. If xi does not
appear in f then pi = 1/2. If xi appears unnegated in f then pi = 1/2 + 2−k,
and if xi appears negated in f then pi = 1/2 − 2−k. The probability pi can be
estimated within additive error 2−k−1 with high probability by using poly(2k)
random examples. Thus, we can successively determine all literals of f in time
poly(2k, n). ��

4 Learning k-Juntas Exactly

In this section we consider the parameterized learnability of concept classes that
are evaluable in fixed parameter time. Our main result here is that any such class
is randomized fpt EQ-learnable with access to an oracle in W[P], provided that
the Hamming weight is used as parameter. Our learning algorithm uses a similar
strategy as the exact learning algorithm of Bshouty et al. [7]. We first recall a
version of the Valiant-Vazirani lemma [24] that lower bounds the probability
that a randomly chosen linear function h isolates some x ∈ D (we say that a
function h : {0, 1}s → {0, 1}l isolates x in D ⊆ {0, 1}s, if x is the only string in
D with h(x) = 0l). Furthermore, it provides an upper bound on the probability
that such an isolated x lies in a given small subset D′ of D.
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Lemma 8. Let D ⊆ {0, 1}s −{0s} be a non-empty set of cardinality c, let D′ ⊆
D be of cardinality at most c/12, and let l be an integer such that 2l < 3c ≤ 2l+1.
Then, for a uniformly chosen linear function h : {0, 1}s → {0, 1}l,

– with probability at least 2/9, there exists exactly one element x ∈ D such
that h(x) = 0l, and

– with probability at most 1/18, there exists some element x ∈ D′ such that
h(x) = 0l.

Theorem 9. Any XP-enumerable representation (R, κ) is randomized fpt EQ-
learnable with access to a uniform-XP oracle and using boolean circuits as hy-
potheses. Moreover, if the Hamming weight is used as parameter, then a W[P]
oracle suffices.

Proof. We give an outline of the proof. Let r̂ be the target. We describe a ran-
domized learning algorithm A that on input n, s = |r̂| and k = κ(r̂) collects a set
S of counterexamples obtained from the teacher. To build a suitable hypothesis
from the current set S, A randomly samples a polynomial number of concept
names r1, . . . , rp from the set

Consk,s(S) = {r ∈ Rk,s | Rn(r) is consistent with S}.

Then A makes an improper equivalence query using the hypothesis

maj[r1,...,rp](x) =

{
1, ‖{i ∈ {1, . . . , p} | x ∈ Rn(ri)}‖ ≥ p/2,

0, otherwise

which is the majority vote on the concepts Rn(r1), . . . , Rn(rp). In order to do
the sampling A will apply the hashing lemma stated above. More precisely, A
cycles through all values l = s, s−1, . . . , 1 and randomly chooses linear functions
hi : {0, 1}s → {0, 1}l, i = 1, . . . , p. Then A uses the oracle

B = {(k, r, S, h, s, l) | ∃r′ : rr′ ∈ Consk,s(S) and h(rr′) = 0l},

where k is the parameter, to find for each function hi a concept name ri (if it
exists) that is isolated by hi in Consk,s(S). Note that B belongs to uniform-XP
as the representation (R, κ) is XP-enumerable. Now, for i = 1, . . . , p and each
string x ∈ {0, 1}n with the property that

‖{r ∈ Consk,s(S) | x ∈ Rn(r) ⇔ x ∈ Rn(r̂)}‖ > (11/12)‖Consk,s(S)‖

(meaning that the inclusion of the counterexample x in S discards less than a
1/12 fraction of all representations in Consk,s(S)) consider the random variable

Zi(x) =

⎧
⎪⎨
⎪⎩

−1, hi isolates an ri in Consk,s(S) with x ∈ Rn(ri)ΔRn(r̂),
0, hi does not isolate any string in Consk,s(S),
1, hi isolates an ri in Consk,s(S) with x ∈ Rn(ri) ⇔ x ∈ Rn(r̂).
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Then, provided that l has the right value, it follows that

E(Zi(x)) ≥ (2/9 − 1/18) − 1/18 = 1/9

and by Hoefding’s inequality we get

Prob

[
p∑

i=1

Zi(x) ≤ 0

]
= 2−Ω(p).

Since the equivalence query h = maj[r1,...,rp] only disagrees with the target on the
classification of x if

∑p
i=1 Zi(x) ≤ 0, this means that with probability 1−2n−Ω(p),

h allows only counterexamples x that discard at least a 1/12 fraction of all
representations in Consk,s(S).

To complete the proof outline, note that it is easy to see that if we use the
Hamming weight as parameterization, then the oracle B actually belongs to
W[P]. ��

As an immediate consequence we get the following corollary.

Corollary 1. Any XP-enumerable representation (R, κ) is PAC-learnable in
randomized fixed parameter time with access to a uniform-XP oracle. Moreover,
if the Hamming weight is used as parameter, then a W[P] oracle suffices.

By using the representation J of k-juntas described in Section 2.2, we immedi-
ately get the following positive learning result for k-juntas.

Corollary 2. k-juntas are randomized fpt EQ-learnable with access to a W[P]
oracle.

Note that the hypotheses used by the query-learning algorithm can have up to n
relevant variables. It is not hard to verify that this is essentially optimal for any
algorithm with fixed parameter running time. To see this, suppose that A learns
k-juntas with g(k)nc equivalence queries using circuits having at most l relevant
variables as hypotheses. Consider the subclass D consisting of all monotone
monomials with exactly k variables.

If A asks the constant h ≡ 0 function as an equivalence query, then no mono-
tone monomial from D agrees with h on the counterexample a = 1n. Otherwise
let a be a counterexample such that h(a) = 1 where ai = 0 on all positions i for
which h does not depend on xi. The number of hypotheses from D that agree
with h on a is at most

(
l
k

)
. Hence, for every equivalence query h there is some

counterexample a such that the algorithm A can discard at most
(

l
k

)
hypotheses

from D. By a simple counting argument it follows that

g(k)nc

(
l

k

)
≥

(
n

k

)
− 1,

implying that l = Ω(n1−c/k/g(k)1/k). Thus it follows for all ε and for sufficiently
large k and n that l ≥ n1−ε/g(k).
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We conclude this section with a remark on exactly learning a generalization of
juntas with membership queries. Consider the natural generalization of k-juntas
where the target f is a boolean function of k linear forms on the n variables over
the field F2. More precisely, f(x1, . . . , xn) = g(a1(x), . . . , ak(x)), where each
ai(x) is defined as a linear function

∑n
j=1 aijxj over F2, where aij ∈ {0, 1}.

Using membership queries such “generalized” k-juntas are exactly learnable in
time 2O(k)nO(1) by a direct application of the learning algorithm of Kushilevitz
and Mansour [19, Theorem 5.3]. According to this result, a boolean decision tree
of depth d and n variables with F2-linear functions at each node can be exactly
learned with membership queries in deterministic time polynomial in n and 2d.
Now it suffices to observe that a generalized k-junta can be transformed into a
decision tree of depth k with a linear function at each node.

5 Discussion and Open Problems

We have examined the parameterized complexity of learning k-juntas, with our
notion of efficient learning as fixed parameter tractable learnability. Our main
results are about the hardness of learning k-juntas and subclasses of k-juntas
in the PAC model by reductions ¿from a W[2]-complete problem. On the other
hand, as a consequence of a more general result we show that k-juntas are exactly
learnable with improper equivalence queries and access to a W[P] oracle. Some
interesting open questions remain.

The main open question is whether the learning result of [22] for k-juntas can
be improved to show that k-juntas are fpt PAC-learnable with boolean circuits as
hypotheses. A more modest question is whether (monotone) k-monomials are fpt
PAC-learnable with boolean circuits as hypotheses having k′ relevant variables,
where k′ = g(k) only depends on k. From Theorem 6 we only know that if we
choose for g the identity function, then this is not possible unless W[2] collapses.
On the other hand, Warmuth’s modification of Haussler’s algorithm achieves
PAC learning of k-monomials in polynomial time with k log(2/ε)-monomials as
hypotheses.
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Abstract. In transfer learning the aim is to solve new learning tasks
using fewer examples by using information gained from solving related
tasks. Existing transfer learning methods have been used successfully in
practice and PAC analysis of these methods have been developed. But the
key notion of relatedness between tasks has not yet been defined clearly,
which makes it difficult to understand, let alone answer, questions that
naturally arise in the context of transfer, such as, how much information
to transfer, whether to transfer information, and how to transfer infor-
mation across tasks. In this paper we look at transfer learning from the
perspective of Algorithmic Information Theory, and formally solve these
problems in the same sense Solomonoff Induction solves the problem of
inductive inference. We define universal measures of relatedness between
tasks, and use these measures to develop universally optimal Bayesian
transfer learning methods.

1 Introduction

In Transfer Learning (TL) (e.g. [1], [2]) we are concerned with reducing sample
complexity required to learn a particular task by using information from solving
related tasks (see [3] for a review). Each task in TL corresponds to a particular
probability measure generating the data for the task. Transfer learning has in
general been inspired by noting that to solve a problem at hand, people almost
always use knowledge from solving related problems previously. This motivation
has been borne out by practical successes; TL was used to recognize related parts
of a visual scene in robot navigation tasks, predict rewards in related regions in
reinforcement learning based robot navigation problems, and predict results of
related medical tests for the same group of patients etc. A key concept in transfer
learning, then, is this notion of relatedness between tasks. As we will see, it is
not yet clear what the proper way to define this notion is (see also [4]), and
in addition to being conceptually troubling, this problem has also hampered
development of even more powerful and principled transfer algorithms.

Many current TL methods are in essence based on the method developed in
[1]. The basic idea is to learn m related tasks in parallel using neural networks,
with all the tasks defined on the same input space (Fig. 1). Different tasks are
related by virtue of requiring the same set of good ‘high level features’ encoded by

M. Hutter, R.A. Servedio, and E. Takimoto (Eds.): ALT 2007, LNAI 4754, pp. 135–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. A typical transfer learning method

the hidden units. The hope is that by training with alternating training samples
from different tasks, these common high level features will be learned quicker.
The same idea has been used for sequential transfer - i.e. input-to-hidden layer
weights from previously learned related tasks were used to speed up learning of
new tasks. So tasks are considered related if they can be learned faster together
than individually - i.e. if they have a common near-optimal inductive bias with
respect to a given hypothesis space (e.g. the common hidden units in Fig. 1).

This case was analyzed extensively in a PAC setting in [5]. Here a probability
distribution P was assumed over the space of tasks, and bounds were derived on
the sample complexity required to estimate the expected error (with respect to
P ) of the m tasks when the tasks were learned using a sub-space of the hypothesis
space. That is bounds were derived for sample complexity for estimating fitness
of inductive biases. Most work done on TL is subsumed by this analysis, and
they all begin with the assumption that tasks have a common, near optimal
inductive bias. So no actual measure of similarity between tasks is prescribed,
and hence it becomes difficult to understand, let alone answer, questions such as
‘how and when should we transfer information between tasks?’ and ‘how much
information should we transfer?’.

There has been some work which attempts to solve these problems. [4] gives
a more explicit measure of relatedness in which two tasks P and Q are said to
be similar with respect to a given set of functions F if ∃f ∈ F such that P (a) =
Q(f(a)) for all events a. Using F , the authors derive PAC sample complexity
bounds for the error of each task (as opposed to expected error in [5]), which can
be smaller than single task bounds under certain conditions. More interesting
is the approach in [6] (see Sects. 4.3, 6) which gives PAC bounds in the setting
of [5]. Here, the sample complexity is proportional to the joint Kolmogorov
complexity of the m hypotheses, and so the Kolmogorov complexity measures
task relatedness. However, the bounds hold only for ≥ 8192 tasks (Theorem 3).

In this paper we address the problems with transfer learning mentioned above
in the framework of Algorithmic Information Theory. Our aim will be to look at
what is the best we can do (most amount of similarity between tasks we can un-
cover, most amount of information we can transfer etc.) given unlimited amount
of computational time and space. We use and extend the theory of Information
Distance [7] to measure relatedness between tasks, transfer the right amount of
information etc. For our task space we restrict ourselves to probability measures
that are lower semi-computable, which is reasonable as it covers all situations
where we learn using computers. In this space the Information Distance is a
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universal measure of relatedness between tasks. We give a sharp characteriza-
tion of Information Distance by showing it is, upto a constant, equal to the
Cognitive Distance (Theorems 3.1 and 3.2, which are quite interesting results
in and of themselves). Based on this distance we develop universally optimal
Bayesian transfer learning methods for doing sequential transfer (Theorem 4.1).
We show that sequential transfer is always justified from a formal perspective
(Theorem 4.2). We also show that, while universally optimal parallel trans-
fer/multitask learning methods exist (Theorem 4.3), in contrast to sequential
transfer methods, it is not clear that these methods are transfer learning meth-
ods or are justified when we do not know a-priori that parallel transfer will be
useful.

2 Preliminaries

We use a := b to mean expression a is defined by expression b. For any finite
alphabet A, let A∗, An, A∞ be the set of all finite strings, length n strings and
infinite sequences in A respectively. Let ε be the empty string. For x, y ∈ A∗,
xy denotes y concatenated to the end of x. Let l(x) denote the length of a finite
string x. We use 〈·, ·〉 to denote a standard bijective mapping from A∗×A∗ → A∗.
〈〉m denotes the m-arity version of this, and 〉〈m

i denotes the ith component of the
inverse of 〈〉m. We assume the standard ‘lexicographical’ correspondence between
A∗ and IN – e.g. for A := {0, 1}, this is (ε, 0), (0, 1), (1, 2), (00, 3), (01, 4), · · · .
Depending on the context, elements of each pair will be used interchangeably
(so 01 (and 4) may mean either 01 or 4). A rational number a/b is represented

by 〈a, b〉. We use
+

≤ to denote ≤ upto an additive constant independent of the

variables in the relation i.e. f(x)
+

≤ g(x) ≡ f(x) ≤ g(x) + c. We use the same
convention for all the usual binary inequality relations. Let 2−∞ := 0, log := log2

and m̄ the self delimiting encoding of m ∈ IN using l(m) + 2l(l(m)) + 1 bits [8].
We fix a reference prefix universal Turing machine U : B∗ × A∗ → A∗, where

B := {0, 1} is the alphabet for programs, and A, A ⊃ B, is an arbitrary alphabet
for inputs and outputs. Fixing U as a reference machine is fine because of the
Invariance Theorem – see [8]. The prefix property means that programs are self-
delimiting and the lengths of programs satisfy the Kraft inequality:

∑
p 2−l(p) ≤

1. U(p, x) denotes running the program p on input x. When it is clear from the
context that p is a program, we will denote U(p, x) simply by p(x). A real function
f is upper semi-computable if there is a program p such that for x, t ∈ IN, 1)
p(〈x, t〉) halts in finite time 2) p(〈x, t〉) ≥ p(〈x, t+1〉) 3) limt→∞ p(〈x, t〉) = f(x).
A real function f is lower semi-computable if −f is upper semi-computable.
A function f is computable/recursive if there is a p such that for n, x ∈ IN,
|p(〈x, n〉) − f(x)| < 2−n, and p(〈x, n〉) halts in finite time.

3 Universal Transfer Learning Distances

In this section we will first describe our task space and the learning problem we
consider. Then we will discuss our universal transfer learning distances.
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3.1 Task Space V and the Learning Problem

We consider as our task space a particular subset of the set of all semi-measures.

Definition 3.1. A semi-measure is a function f : A∗ → [0, 1] such that ∀x ∈
A∗, f(x) ≥

∑
a∈A f(xa).

f(x) is the ‘defective probability’ that a particular infinite sequence starts with
the prefix string x (f is a probability measure if f(ε) = 1 and the inequality
is an equality). So f is equivalent to a probability measure p defined on [0, 1]
such that f(x) = p([0.x, 0.x + |A|−l(x))) where 0.x is in base |A|. The condi-
tional probability of the next letter being a given the string x observed so far is
f(a|x) := f(xa)/f(x).

[9] showed that the set of all lower semi-computable semi-measures is recur-
sively enumerable. That is, there is a Turing machine T such that T (〈i, ·〉) lower
semi-computes fi(·), the ith semi-measure in this effective enumeration. Since U
is universal, for each i ∈ IN, there is a program pi such that pi(x) = T (〈i, x〉).
Let V be the enumeration of these programs - i.e. pi ∈ V lower semi-computes
fi, and each lower semi-computable semi-measure f is computed by at least one
pj ∈ V . We will consider enumerable subsets V ′ of V as our task space, as any
probability measure that we may expect to be able to learn must either belong
to the set of computable measures, or have a reasonable approximation (however
it may be defined) that does. V is the largest superset of this that contains any
Bayes mixture of its own elements, which is important in Sect. 4 (see also [10,
Sect. 2.6] and [8]).

The learning problem we consider is the online learning setting. When learning
task μ, at each step t, a ∈ A is generated according to μ(.|x), where x is the
sequence of length t − 1 generated by μ in the previous t − 1 steps. The learning
problem is to predict the letter a at each step (see e.g. [10, Sect. 6.2] for how
i.i.d. learning problems are a special case of this setting).

3.2 Universal Transfer Learning Distance

We want our transfer learning distance to measure the amount of constructive
information μ, ϕ ∈ V contain about each other. Elements of V are strings, and
the following defines amount of constructive information any string y contains
about another string x.

Definition 3.2. The conditional Kolmogorov complexity of x given y,
x, y ∈ A∗ is the length of the shortest program that outputs x given y:

K(x|y) := min
p

{l(p) : p(y) = x}.

Conditional Kolmogorov complexity measures absolute information content of
individual objects, and is a sharper version of information-theoretic entropy
which measures information content of ensemble of objects relative to a dis-
tribution over them. When y = ε, the above is just called Kolmogorov com-
plexity and denoted by K(x). For m strings we use 〈〉m – e.g. K(x, y|z, w) :=



On Universal Transfer Learning 139

K(〈x, y〉|〈z, w〉) etc. We will use the following minimality property of K(x|y) -
for any partial, non-negative, upper semi-computable function f : A∗×A∗ → IR,
if

∑
x 2−f(x,y) ≤ 1 (taking f(x, y) = ∞ when it is undefined)

K(x|y)
+

≤ f(x, y). (1)

Kolmogorov complexity is upper semi-computable, which is in agreement with
our desire to investigate information transfer in principle. See [8] for the above
results and a comprehensive introduction to AIT.

To measure the amount of information two strings contain about each other
in [7] the authors defined the following upper semi-computable function:

Definition 3.3. The Information Distance between x, y ∈ A∗ is the length
of the shortest program that given x outputs y, and vice versa:

E0(x, y) := min
p

{l(p) : p(x) = y, p(y) = x}.

So for μ, ϕ ∈ V , E0(μ, ϕ) measures the amount of information μ and ϕ contain
about each other. Hence E0 is the natural candidate for a transfer learning
distance. We will however use a sharper characterization of E0:

Definition 3.4. The Cognitive Distance between x, y ∈ A∗ is given by

E1(x, y) := max{K(x|y), K(y|x)}.

E1 is upper semi-computable - we simply upper semi-compute in ‘parallel’ (by
dovetailing) each term in the definition of E1. In [7] it was proved:

E0(x, y) = E1(x, y) + O[log(E1(x, y))]. (2)

We will actually prove a sharper version of the above where the log term is
replaced by a constant. Now, we need:

Definition 3.5. An admissibledistance D is a partial, upper semi-computable,
non-negative, symmetric function on A∗ × A∗ with ∀y

∑
x 2−D(x,y) ≤ 1 ( we will

assume D(x, y) = ∞ when it is undefined). Let D be the set of admissible distances.

A D ∈ D is universal in D if ∀D′ ∈ D, ∀x, y ∈ A∗, D(x, y)
+

≤ D′(x, y).

In [7] it was shown that ∀D ∈ D, ∀x, y ∈ A∗

E1(x, y)
+

≤ D(x, y). (3)

That is, E1 is universal in D (this was proven via (1) with f = D, as D satisfies
the requisite conditions due to its admissibility). Note that [7] showed that the
above holds for admissible metrics, but as pointed out in [11] this holds for
admissible distances as well. Admissible distances include admissible versions of
Hamming, Edit, Euclidean, Lempel-Ziv etc. distances [7,11,12]. See [7] for an
eloquent account of why admissible distances (and distances satisfying the Kraft
Inequality) are interesting for strings. Normalized, practical versions of E1 has
been applied very successfully in various clustering tasks - see [11] and especially
[12]. We now state a sharper version of (2) (the proof is in the Appendix).
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Theorem 3.1
E0(x, y) += E1(x, y).

Given Theorem 3.1, we now define:

Definition 3.6. The transfer learning distance between two tasks μ, ϕ ∈ V
is defined as E1(μ, ϕ).

So from the above, we immediately get that transfer learning distance is uni-
versal in the class of admissible distances that may be used for measuring task
similarity. This formally solves the conceptual problem of how one measures task
similarity. We will use this distance function in Sect. 4 to formally solve other
problems in transfer learning mentioned in the Introduction and give more rea-
sons why it is sufficient to consider only admissible distances (see discussion fol-
lowing the proof of Theorem 4.1). E1 and K are sufficient for sequential transfer
(Sect. 4.2), however, for parallel transfer/multitask learning (Sect. 4.3), we do
not even need this, as it is not clear that these are transfer methods.

3.3 Universal Transfer Learning Distance for m Tasks

The material in this section may be skipped as it is not used below, but we include
it here for the sake of completeness and because the results are interesting in
and of themselves. We also hope that the functions here will find application in
task clustering problems which are important for designing ‘Long Lived’ transfer
learning agents [3], and in clustering problems in general, as in [12]. The distance
functions in this section apply to arbitrary strings in addition to elements of V .

Let X := {x1, x2, · · · , xm}, xj ∈ A∗, Xm1
i the ith subset of X of size m1,

0 < m1 < m, 0 < i <
(

m
m1

)
. Let σ(Xm1

i ) be the set of permutations of elements
of Xm1

i . Then, to generalize E0 to measure how much each group of m1 xjs,
0 < m1 < m, contain about the other m − m1 xjs, we define:

Definition 3.7. The m fold information distance Em
0 (x1, x2, · · · , xm) be-

tween x1, x2, · · · , xm ∈ A∗ is the length of the shortest program that given any
permutation of m1 xjs, 1 < m1 < m, outputs a permutation of the other m−m1

xjs. That is:

Em
0 (x1, x2, · · · , xm) := min

p
{l(p) : ∀m1, i, x, 0 < m1 < m, 1 ≤ i ≤

(
m

m1

)
,

x ∈ σ(Xm1
i ), p(〈〈x〉m1 , m1〉) = 〈y〉m−m1 , where y ∈ σ(X\Xm1

i )}.

In contrast to E0 the additional information m1 is included in the definition for
Em

0 to determine how to interpret the input, – i.e. which 〉〈m1 to use to decode
the input. Em

0 is upper semi-computable by the same reasoning E0 is [7]. To give
a sharper characterization of Em

0 , we define:

Definition 3.8. The Cognitive Distance for m strings in A∗ is:

Em
1 (x1, x2, · · · , xm) := max

xi

max
y∈σ(X\{xi})

E1(xi, 〈y〉m−1).
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Em
1 is upper semi-computable by the same reasoning E1 is. We can now state

the analogue of Theorem 3.1 for m strings (the proof is in the Appendix):

Theorem 3.2. Em
0 (x1, x2, · · · , xm) += Em

1 (x1, x2, · · · , xm).

Definition 3.9. The m-fold transfer learning distance between m tasks
μ1, μ2, · · · , μm ∈ V is defined as Em

1 (μ1, μ2, · · · , μm).

Theorem 3.3. The following are true:

1. Em
1 is universal in the class of admissible distances for m strings - i.e.

functions Dm : ×mA∗ → IR that are non-negative, upper semi-computable,
m-wise symmetric, and satisfies the following version of the Kraft inequal-
ity: ∀x, y1, y2, · · · , ym−1 ∈ A∗,

∑
z1,··· ,zm−1∈A∗ 2−Dm(x,z1,··· ,zm−1) ≤ 1 and∑

w∈A∗ 2−Dm(w,y1,··· ,ym−1) ≤ 1.
2. Em

1 satisfies the above version of the Kraft inequality.

Proof. Let x, y1, y2, · · · , ym−1 ∈ A∗. For part 1, by (1) and admissibility of Dm,

K(x|y1, y2, · · · , ym−1), K(y1, y2, · · · , ym−1|x)
+

≤ Dm(x, y1, y2, · · · , ym−1). The
desired result now follows from the definition of Em

1 . Part 2 follows because by
definition E1(x, 〈y1, y2, · · · , ym−1〉m−1) ≤ Em

1 (x, y1, y2, · · · , ym−1), and
E1(x, 〈y1, y2, · · · , ym−1〉m−1)satisfies the Kraft inequality in part 1 (see Sect. 4.2).

�

4 Universal Bayesian Transfer Learning

In this section we will discuss how to do transfer learning in Bayes mixtures over
enumerable subsets V ′ of V , which we consider as our task spaces. That is we will
present a transfer learning analogue of Solomonoff Induction [13]. First we
will discuss relevant error bounds for Bayesian sequence prediction, and then
we will present our transfer learning methods.

4.1 Bayesian Convergence Results

A Bayes Mixture M over V ′ is defined by:

M(x) :=
∑

μi∈V′

μi(x)W (μi). (4)

where W is a prior with W (μi) ≥ 0 for each μi and
∑

μi∈V′ W (μi) ≤ 1. Then
the following well-known extraordinary result holds true ∀μj ∈ V ′ :

∞∑
t=0

∑
x∈At

μj(x)

(∑
a∈A

[M(a|x) − μj(a|x)]2
)

≤ − lnW (μj). (5)

Note that, for finite − lnW (μj), convergence is rapid; the expected number of
times t |M(a|x) − μj(a|x)| > ε is ≤ − ln W (μj)/ε2, and the probability that the
number of ε deviations > − lnW (μj)/ε2δ is < δ. Now define:
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Definition 4.1. For a prior W , the error bound under (5) is defined as
EbW (μ) := − ln W (μ). A prior W is said to be universally optimal in some

class C if for all priors W ′ ∈ C, ∀μ ∈ V ′, EbW (μ)
+

≤ EbW ′(μ).

As we wish to investigate transfer in the limit, we will only consider lower semi-
computable priors. Of particular interest is the Solomonoff-Levin prior: 2−K(μi).
In this case, the error bound is K(μj) ln 2. This is intuitively appealing because it
shows the smaller the code for μj , the smaller the bound, which is a instantiation
of Occam’s razor. In addition, for any other lower semi-computable prior W , the
error bound − ln W (μj) is upper semi-computable, and − ln W/ ln 2 satisfies the
conditions for (1) (with y = ε and W (x) undefined if x �∈ V ′), so:

K(μj) ln 2
+

≤ − ln W (μj). (6)

i.e. the Solomonoff-Levin prior is universally optimal in the class of lower semi-
computable priors. Equation (5) was first proved in [13] for V ′ = V and A =
B, and was then extended to arbitrary finite alphabets, V ′s and bounded loss
functions in [10], [14]. In [10] Hutter has also shown that Bayes mixtures are
Pareto optimal, and that if μj �∈ V ′, but there is a ρ ∈ V ′ such that ∀t ∈ IN, the
tth order KL divergence between ρ and μj ≤ k, then EbW (μj) = − lnW (ρ) + k.

4.2 Universal Sequential Transfer Learning

We assume that we are given tasks ϕ1, ϕ2, · · · , ϕm−1, ϕi ∈ V , as previously
learned tasks. We do not care about how these were learned - for instance
each ϕi may be a weighted sum of elements of V ′ after having observed a
finite sequence x(i) [10, Sect. 2.4] or each ϕi may be given by the user. Let
ϕ := 〈ϕ1, ϕ2, . . . , ϕm−1〉m−1. The aim of transfer learning is to use ϕ as prior
knowledge when predicting for the mth task with some unknown generating
semi-measure μ ∈ V ′. Given this, a transfer learning scheme is just a conditional
prior over V ′, and it may or may not be based on a distance function. So,

Definition 4.2. A transfer learning scheme is a lower semi-computable prior
W (μi|ϕ) with

∑
μi∈V′ W (μi|ϕ) ≤ 1, and W (x|ϕ) undefined for x �∈ V ′. A sym-

metric distance D based transfer learning scheme is a transfer learning
scheme WD(μi|ϕ) with WD(μi|ϕ) := g(D(μi, ϕ)) for a symmetric function D :
A∗ × A∗ → IR and g : IR → [0, 1].

WD is defined in terms of g because we do not want to put restrictions on how
the distance function D may be used to induce a prior, or even what constraints
D must satisfy other than being symmetric.

Definition 4.3. Our universal transfer learning scheme is the prior ξTL
(μi|ϕ) := 2−K(μi|ϕ). Our TL distance based universal transfer learning
scheme for Bayes mixtures over V ′ is the prior ξDTL(μi|ϕ) := 2−E1(μi,ϕ).



On Universal Transfer Learning 143

For ξDTL we use E1 instead of Em
1 because E1 measures amount of information

between the mth task and previous m−1 tasks, which is what we want, whereas
Em

1 measures amount of information between all possible disjoint groupings of
tasks, and hence it measures more information than we are interested in. ξDTL is
a prior since

∑
μi∈V′ 2−E1(μi,ϕ) ≤

∑
μi∈V′ 2−K(μi|ϕ) ≤ 1 (K(μi|ϕ) being lengths

of programs). As E1(·, ϕ) and K(·|ϕ) are upper semi-computable, ξDTL and ξTL
are lower semi-computable.

So in the Bayesian framework ξDTL automatically transfers the right amount
of information from previous tasks to a potential new task by weighing it ac-
cording to how related it is to older tasks. ξTL is less conceptually pleasing as
K(μi|ϕ) is not a distance, and a goal of TL has been to define transfer learning
scheme using TL distance functions. But as we see below, ξTL is actually more
generally applicable for sequential transfer.

Theorem 4.1. ξTL and ξDTL are universally optimal in the class of transfer
learning schemes and distance based transfer learning schemes respectively.

Proof. Let W be a transfer learning scheme. EbξTL(μ) = K(μ|ϕ) ln 2 and EbW (μ)
= − lnW (μ|ϕ). W is lower semi-computable, which implies − lnW is upper semi-
computable; − ln W/ ln 2, restricted to V ′, satisfies the requisite conditions for

(1) with y = ϕ, and so EbξTL(μ)
+

≤ EbW (μ).
Let WD be a distance based transfer learning scheme. EbξDTL(μ) = E1(μ, ϕ)

ln 2 and EbWD (μ) = − lnWD(μ|ϕ). − ln WD is upper semi-computable as WD is
lower semi-computable; − lnWD is symmetric, and restricted to V ′, − lnWD/ ln 2
satisfies the Kraft inequality condition in Definition 3.5; therefore − lnWD/ ln 2

∈ D. Now by (3) EbξDTL(μ)
+

≤ EbWD (μ). �

Note that for WD the error bound is given by − lnWD / ln 2 which is ∈ D,
and so whether D itself is admissible or not is irrelevant. This further justifies
considering only admissible distances. So from the theorem and discussion above,
our method formally solves the problem of sequential transfer. It is universally
optimal, and it automatically determines how much information to transfer.
Additionally, ξTL does not transfer information when the tasks are not related
in the following sense. By (6), the non-transfer universally optimal prior is 2−K(.),

with error bound K(μ) ln 2. As K(μ|ϕ)
+

≤ K(μ) (by definition), we have

Theorem 4.2. ξTL is universally optimal in the class of non-transfer priors.

The above implies, that, from a formal perspective, sequential transfer is always
justified - i.e. it never hurts to transfer (see last paragraph of Sect. 4.3).

4.3 Universal Parallel Transfer Learning

Multitask learning methods are considered to be ‘parallel transfer’ methods, but
as we will see in this section, it is not entirely clear if this is true. In parallel trans-
fer we learn m related tasks in parallel. There are m generating semi-measures
μ1, μ2, · · · , μm ∈ V generating sequences x(1), x(2), · · · , x(m) respectively. At step



144 M.M.H. Mahmud

t, μi generates the tth bit of sequence x(i) in the usual way. To apply (5) in this
scenario, we assume that our semi-measures are defined over an alphabet Am of
size |A|m, i.e. we use an m vector of A to represent each element of Am. So given
a sequence x of elements of Am, i.e. x ∈ A∗

m, x(i) will be the ith components
of vectors in x, for 1 ≤ i ≤ m. A semi-measure over Am is now defined as in
Definition 3.1. Our task space Vm is now defined by:

Vm := {ρ : ∀x ∈ A∗
m, ρ(x) =

∏
i

ρm
i (x(i)) where ρm

i ∈ V}.

We denote the m different components of ρ ∈ Vm by ρm
i . It is easy to see

that Vm is enumerable: as we enumerate V , we use the 〈〉m map to determine
the elements of V that will be the components of a particular ρ ∈ Vm. We will
consider as our task spaces enumerable subsets V ′

m of Vm. A Bayes mixture is
given, as in (4), by Mm(x) :=

∑
μi∈V′

m
μi(x)W (μi). As before we define:

Definition 4.4. A parallel transfer learning scheme Wm is a lower semi-
computable prior over V ′

m (Wm(x) undefined for x �∈ V ′
m):

Wm(ρ) := Wm(ρm
1 , ρm

2 , · · · , ρm
m) with

∑
ρ∈V′

m

Wm(ρ) ≤ 1.

The universal parallel transfer learning scheme is defined as the prior:

ξPTL(ρ) := ξPTL(ρm
1 , ρm

2 , · · · , ρm
m) := 2−K(ρm

1 ,ρm
2 ,··· ,ρm

m).

Theorem 4.3. ξPTL is universally optimal in the class of parallel transfer learn-
ing schemes.

Proof. Let the generating semi-measure be μ = μm
1 , μm

2 , · · · , μm
m. EbξPTL(μ) =

K(μm
1 , μm

2 , · · · , μm
m) ln 2 while for any Wm, EbWm(μ)=− ln Wm(μm

1 , μm
2 , · · · , μm

m).

By minimality (1), K(μm
1 , μm

2 , · · · , μm
m) ln 2

+

≤ − lnWm(μm
1 , μm

2 , · · · , μm
m). Hence

the prior ξPTL is universally optimal. �

Indeed, K(ρm
1 , ρm

2 , · · · , ρm
m) is the measure of similarity that was used in [6] to

analyze multitask learning in a PAC setting (as mentioned in the Introduction).
However, ξPTL is also the non-transfer Solomonoff-Levin prior for the space Vm.
Therefore, it seems that in multitask transfer, in contrast to sequential transfer,
no actual transfer of information is occurring. Plain single task learning is taking
place, but in a product space. The benefit of this is not clear from a formal

perspective as K(x)
+

≤ K(y1, y2, x, · · · , ym−1), and so this type of ‘transfer’, in
general, should not help learning. Note that, for other performance measures
(e.g. sum of the errors for the m tasks) where the error bound is − lnWm, via
similar arguments as above 2−K(.) etc. will still be the universally optimal prior.

However: In the majority of multitask learning methods used in practice, each
x(i) corresponds to training samples for task i. In a Bayesian setting, for each
task i, x(j), j �= i now function as prior knowledge, and we have priors of the
form : W (μ|x(j), 1 ≤ j ≤ m, j �= i). So current multitask learning methods seem
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to be performing m sequential transfers in parallel, rather than ‘pure’ parallel
transfer. However, it has been observed that transferring from unrelated tasks
hurts generalization [1], which, given Theorem 4.2, seems to contradict the above
conclusion. Nonetheless, our own empirical investigations [15] lead us to believe
that this is not because of parallel transfer but use of improper algorithms.

5 Kolmogorov Complexity of Functions

One natural definition of Kolmogorov complexity of a function f given string q
is K ′(f |q), the length of the shortest program that computes f given q as extra
information [16, Sect. 7], [17, Sect 2.2.3] . So one objection to the definitions
in this paper may be that, since we are interested in μ ∈ V as semi-measures
(i.e. functions), perhaps we should define the complexity of μ ∈ V as K ′(μ|q).
However K ′ is not computable in the limit, so to address this concern, we adapt
the definition in [16], and define K ′′(μ|q) (which is upper semi-computable):

Definition 5.1. For μ ∈ V , q ∈ A∗,

K ′′(μ|q) := min
r

{l(r) : r(q) = α and ∃ proof § ∀x : μ(x) ⇑ α(x) §}.

The above definition means K ′′(μ|q) is the length of the shortest program that
given q as input, outputs a program α that provably lower semi-computes (de-
noted by ⇑) the same semi-measure as μ. The proof is in a formal system F , in
which we can formalize equality of programs in the sense of ⇑. Formulas in F are
enclosed in § § - so § ∀x : μ(x) ⇑ α(x) § is true if and only if ∀x, U(μ, x) ⇑ U(α, x).
Another property of F we use is that the set of correct proofs is enumerable (see
[16] for more details). The following is true:

Lemma 5.1. Let arg K ′′(μ|q) denote the α that is the witness in Definition 5.1.
Then, 1) ∀μ ∈ V , q ∈ A∗, K ′′(μ|q) ≤ K(μ|q) . 2) ∀n ∈ IN, q ∈ A∗ ∃μ ∈
V such that K(μ|q) − K ′′(μ|q)

+

≥ n. 3) ∀μ ∈ V , q ∈ A∗, K(argK ′′(μ|q)) +=
K ′′(arg K ′′(μ|q)). 4) ∀q ∈ A∗,

∑
μ∈V 2−K′′(μ|q) = ∞.

Proof. The results are mostly self-evident. Part 1 follows from definition since
each μ ∈ V provably computes the same function as itself. For part 2, fix
q ∈ A∗, ϕ ∈ V , and n ∈ IN. Now by the theory of random strings (see
[8]), there exists infinitely many incompressible strings - i.e. strings s such
that K(s|ϕ, K(ϕ|q), q) ≥ l(s). Let l(s) = n, and construct a μ ∈ V which is
just ϕ with s encoded in it at a fixed position t. Now K(μ|q) += K(s, ϕ|q),
since, using t, given a program to generate μ given q, we can recover ϕ and
s from it, and given a program to generate 〈s, ϕ〉 given q, we can construct
μ. A fundamental and deep result in AIT, due to Gacs and Chaitin, gives us
K(s, ϕ|q) += K(s|ϕ, K(ϕ|q), q) + K(ϕ|q). By definition K ′′(μ|q) ≤ K(ϕ|q), so we
get, K(μ|q) − K ′′(μ|q) += K(ϕ, s|q) − K ′′(μ|q) += K(s|ϕ, K(ϕ|q), q) + K(ϕ|q) −
K ′′(μ|q) ≥ n + K(ϕ|q) − K ′′(μ|q) ≥ n + K(ϕ|q) − K(ϕ|q) = n.
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Part 3 follows from definition. For part 4, for each ϕ ∈ V , by the method in
part 2, there are infinitely many μ ∈ V such that ∀x, ϕ(x) ⇑ μ(x) provably . So∑

μi∈V 2−K′′(μi|q) = ∞, as infinitely many μis have the same K ′′(μi|q) value. �

Parts 1 and 2 in the lemma show that the K ′′s can uncover much more similarity
between tasks than K. However, there is no advantage to using K ′′ for Bayesian
transfer learning, as for any enumerable set V ′, the set of programs V ′

proof that
are provably equal to the elements of V ′ is also enumerable (because the set
of correct proofs in F are enumerable). Therefore we get that for any μ ∈ V ′,
argK ′′(μ|q) is in V ′

proof . Since the error bound in Bayes mixtures depends only
on the weight assigned to the generating semi-measure , from part 3 of the
above lemma, substituting V ′ with V ′

proof counteracts the benefit of using K ′′.
However, part 2 in the lemma shows that K ′′ deserves further study.

6 Discussion

In this paper we formally solved some of the key problems of transfer learning
in the same sense that Solomonoff Induction solves the problem of inductive in-
ference. We defined universal transfer learning distances and showed how these
may be used to automatically transfer the right amount of information in our
universally optimal Bayesian sequential transfer method. We also showed that
from a formal perspective sequential transfer is always justified, and while opti-
mal parallel transfer method exists, it is not clear that it is a transfer method;
so this issue needs further investigation. We also showed that practical parallel
transfer methods (i.e. [1]) may in fact be sequential transfer methods in disguise.
Practical approximations to our methods to transfer information across arbitrary
databases from the UCI ML repository are described in [15]. We note that the
results and discussion in Sects. 3 and 4 (except the results of Sect. 4.3) also
apply when instead of previous tasks we use arbitrary strings. So our methods
are also universally optimal Bayesian methods for using prior knowledge.

We will conclude with a brief comparison of our method to [6]. [6] deals only
with finite sample spaces, and computable tasks and hypothesis spaces, and
gives PAC bounds, where the sample complexity required to bound the error
for given ε, δ is proportional to Kolmogorov Complexity of the m hypothesis
being considered. The number of tasks required for the bounds to hold is ≥ 8192
(Theorem 3). In contrast, our results are elegant and far more general. They
are incomputable, but serve as explicit guidelines on how one may approximate
them to design principled and powerful practical algorithms [12,15].
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Appendix: Proofs

Proof of Theorem 3.1. E0(x, y) += E1(x, y).

Proof. Let p be a program such that p(x) = y and p(y) = x. So by definition

E1(x, y) ≤ l(p) for all such p. Since arg E0(x, y) is a such a p, we have E1(x, y)
+

≤
E0(x, y). Now we prove the inequality in the other direction. Fix any two strings
α, β and set E1(α, β) = E1. Now we will derive a program qE1 with l(qE1)

+= E1
which given α outputs β and given β outputs α. We will do so by constructing
a graph G that assigns a unique color/code of length ≤ E1 + 1 to each pair of
strings x, y with E1(x, y) ≤ E1, and the code will turn out to be more or less
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the program qE1 we need to convert α to β and vice versa. We note that the
proof of (2) also uses a similar graph construction method. Define G := (V, E)
with vertices V and undirected edges E:

V := {x : x ∈ A} and E := {{x, y} : x ∈ A, y ∈ Ax}, where,
A := {x : ∃y, E1(x, y) ≤ E1} and ∀x ∈ A, Ax := {y : E1(x, y) ≤ E1}.

The degree of x ∈ V is |Ax| by construction. Hence the maximum degree of G
is ΔG = maxx∈A |Ax|. We define the set of colors/code CE1 as:

CE1 := {p0 : p ∈ B} ∪ {p1 : p ∈ B}, where,
B := {p : p(x) = y, x ∈ A, y ∈ Ax, l(p) ≤ E1}.

qE1 will need to dynamically construct G and CE1, and assign a valid coloring
to the edges in G using CE1. For this, all we need is E1. We run all programs
p with l(p) ≤ E1 on all x ∈ A∗ in ‘parallel’ by dovetailing and record triples
(p, x, y) such that p(x) = y. Whenever we record (p, x, y) we check to see if we
have previously recorded (q, y, x). If so, we add p0, p1, q0, q1 to CE1, x, y to V
and {x, y} to E. Of course, if any of these already exist in the respective sets,
we do not add it again. We color a newly added edge {x, y} using a color from
CE1 using the First-Fit algorithm - i.e. the first color that has not been assigned
to any other {x, w} or {y, z}. So, by dynamically reconstructing G, given x (y)
and the color for {x, y}, qE1 can use the color to recognize and output y (x).

That CE1 has sufficient colors to allow valid coloring can be seen as follows.
p ∈ B iff l(p) ≤ E1 and for some Ax, y ∈ Ax, p(x) = y. So for each Ax, for
each y ∈ Ax, ∃py ∈ B, and py �= py′ ∀y′ ∈ Ax, y′ �= y since py(x) �= y′. This
means, for each Ax, |CE1| ≥ 2|Ax|, or |CE1| ≥ 2ΔG. By the same reasoning
and the construction procedure above, as we dynamically construct G and CE1,
the estimates Ct

E1 and Δt
G at step t of the construction process also satisfies

|Ct
E1| ≥ 2Δt

G. Now at step t First-Fit requires at most 2Δt
G −1 colors to assign a

valid color, as two vertices could have exhausted at most 2Δt
G −2 colors between

them. Therefore First-Fit always has sufficient colors to assign a valid coloring
Each color/code in CE1 is at most E1+1 in length by construction. So, as we

construct G, α and β shows up in the graph at some point with code/color (say)
γ, and l(γ) ≤ E1 + 1. From construction of CE1, γ is a self-delimiting string p,
followed by 0 or 1. γ and E1 can be encoded by a string pa0E1−l(p)1, where a is
0 if γ = p0, or 1 if γ = p1, and 0E1−l(p) is 0 repeated E1 − l(p) times.

The desired program qE1 has encoded in it the string pa0E1−l(p)1 at some
fixed position, and qE1(z) works as follows. qE1 decodes p (which is possible
as it is self-delimiting) and then reads the next bit, which is a, to get γ. It
computes E1 from counting the number of 0s after a and l(p). When a = 0,
it is not confused with the 0s following it because it is the bit that appears
immediately after p, and p can be decoded by itself. qE1 then reconstructs G
using E1, and finds the edge {z, w} with color γ, and outputs w. By construction,
if z = α then w = β and if z = β then w = α. Since l(qE1)

+= E1 (the constant
being for the extra bits in pa0E1−l(p)1 and other program code in q), we have
E0(α, β) ≤ l(qE1)

+= E1(α, β), and therefore E0(α, β) += E1(α, β). �
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Proof of Theorem 3.2. Em
0 (x1, x2, · · · , xm) += Em

1 (x1, x2, · · · , xm).

Proof. (Sketch) We assume notation of Sect. 3.3, and use x1,m as a short-
hand for x1, x2, · · · , xm. The proof is similar to the proof of Theorem 3.1. Fix

Λ := {λ1,m}. Em
1 (λ1,m)

+

≤ Em
0 (λ1,m) follows using the method used in proving

the first inequality in Theorem 3.1. But now we have to modify arg Em
0 (λ1,m) to

give it the extra information of length log m and m log m to interpret its input
and order the output strings, respectively, so that its output for the relevant
elements of Λ is like that of arg Em

1 (λ1,m). So with m treated as a constant

Em
1 (λ1,m)

+

≤ Em
0 (λ1,m), and otherwise Em

1 (λ1,m) ≤ Em
0 (λ1,m) + (m + 1) log m.

For the inequality in the other direction let E1m = Em
1 (λ1,m). We will con-

struct a program qE1m with l(qE1m) += E1m that will have the same outputs as
argEm

0 (λ1,m) on 〈〈y〉m1 , m1〉, y ∈ σ(Λm1
i ), 0 < m1 < m, 1 ≤ i ≤

(
m
m1

)
. For this,

we need the set L, and colors CE1m – additionally we define sets Axs and B to
make elucidation of the proof easier:

L := {{x1,m} : Em
1 (x1,m) ≤ E1m} and Ax := {{z1,m−1} : {x, z1,m−1} ∈ L}

CE1m := {pj : p ∈ B, j ≤ m}, where,

B := {p : p(x) = 〈y1,m−1〉m−1, {y1,m−1} ∈ Ax, l(p) ≤ E1m}.

By using E1m and m, qE1m will construct L dynamically and color each element
of L. To do so, we run all programs p with l(p) ≤ E1m on all x ∈ A∗ in parallel. If
we find p(x) = y, we record the tuples (p, (w1,m−1), y) and (p, x, (z1,m−1)), where
x = 〈w1,m−1〉m−1 and y = 〈z1,m−1〉m−1. If we find a x1,m such that we have
recorded (pxi,y, xi, y) and (py,xi, y, xi) for each xi and ∀y ∈ σ({x1,m}\{xi}), then
we add each of the pxi,y, py,xis to B and add the corresponding colors to CE1m.
We add X := {x1,m} to L and color it using a variation of First-Fit in Theorem
3.1 as follows. Denote by C(X) the color assigned to X . Then C(X) is set to the
first γ ∈ CE1m such that ∀x ∈ X , if x ∈ X ′, X ′ ∈ L, then γ �= C(X ′). So given
any x ∈ X, and C(X), qE1m can reconstruct and color L as above and hence find
X. To see that CE1m has enough colors: Let ΔL := maxx |Ax|. For each κ ∈ Ax,
∃pκ ∈ B, pκ(x) = 〈y〉m−1, y ∈ σ(κ) and pκ′ �= pκ ∀κ′ ∈ Ax, κ′ �= κ. Therefore
|CE1m| ≥ mΔL. Also, from the construction method for L above, |Ct

E1m| ≥ mΔt
L

for the estimates at each step t of the construction process. When coloring X
at step t, each x ∈ X has used ≤ Δt

L − 1 colors previously. So, as |X | = m,
First-Fit will require at most m(Δt

L − 1) + 1 colors to assign a valid color to X .
Now maxγ∈CE1m l(γ) ≤ E1m + l(m) (l(m) = �log(m + 1)� [8]), and with m as

a constant, this becomes E1m+ c. Like qE1 from Theorem 3.1, qE1m can encode
E1m, m, and the color γΛ = pj for Λ in itself as pj̄m̄0E1m−l(p)1 (for definition
of j̄ and m̄ see Sect. 2). Using this, qE1m can dynamically construct L, CE1m

and color L. For input 〈x, m1〉, 0 < m1 < m, qE1m decodes x with βj :=〉x〈m1
j ,

0 < j < m1. By construction of L, using any βj and γΛ, qE1m can find Λ in L, and
output 〈y〉m−m1 , y ∈ σ(Λ\{β1,m1}), which is what is required. This proves, with

m as a constant Em
0 (λ1,m)

+

≤ Em
1 (λ1,m) and Em

0 (λ1,m)
+

≤ Em
1 (λ1,m) + 3�log m�

otherwise. This and the first inequality completes the proof. �
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Abstract. Algorithms based on upper-confidence bounds for balancing
exploration and exploitation are gaining popularity since they are easy
to implement, efficient and effective. In this paper we consider a variant
of the basic algorithm for the stochastic, multi-armed bandit problem
that takes into account the empirical variance of the different arms. In
earlier experimental works, such algorithms were found to outperform
the competing algorithms. The purpose of this paper is to provide a the-
oretical explanation of these findings and provide theoretical guidelines
for the tuning of the parameters of these algorithms. For this we analyze
the expected regret and for the first time the concentration of the regret.
The analysis of the expected regret shows that variance estimates can
be especially advantageous when the payoffs of suboptimal arms have
low variance. The risk analysis, rather unexpectedly, reveals that except
for some very special bandit problems, the regret, for upper confidence
bounds based algorithms with standard bias sequences, concentrates only
at a polynomial rate. Hence, although these algorithms achieve logarith-
mic expected regret rates, they seem less attractive when the risk of
suffering much worse than logarithmic regret is also taken into account.

1 Introduction and Notations

In this paper we consider stochastic multi-armed bandit problems. The origi-
nal motivation of bandit problems comes from the desire to optimize efficiency
in clinical trials when the decision maker can choose between treatments but
initially does not know which of the treatments is the most effective one [9].
Multi-armed bandit problems became popular with the seminal paper of Rob-
bins [8], after which they have found applications in diverse fields, such as control,
economics, statistics, or learning theory.

Formally, a K-armed bandit problem (K ≥ 2) is defined by K distributions,
ν1, . . . , νK , one for each “arm” of the bandit. Imagine a gambler playing with

M. Hutter, R.A. Servedio, and E. Takimoto (Eds.): ALT 2007, LNAI 4754, pp. 150–165, 2007.
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these K slot machines. The gambler can pull the arm of any of the machines.
Successive plays of arm k yield a sequence of independent and identically dis-
tributed (i.i.d.) real-valued random variables Xk,1, Xk,2, . . . , coming from the
distribution νk. The random variable Xk,t is the payoff (or reward) of the k-th
arm when this arm is pulled the t-th time. Independence also holds for rewards
across the different arms. The gambler facing the bandit problem wants to pull
the arms so as to maximize his cumulative payoff.

The problem is made challenging by assuming that the payoff distributions
are initially unknown. Thus the gambler must use exploratory actions in order
to learn the utility of the individual arms, making his decisions based on the
available past information. However, exploration has to be carefully controlled
since excessive exploration may lead to unnecessary losses. Hence, efficient on-
line algorithms must find the right balance between exploration and exploitation.

Since the gambler cannot use the distributions of the arms (which are not
available to him) he must follow a policy, which is a mapping from the space of
possible histories, ∪t∈N+{1, . . . , K}t ×R

t, into the set {1, . . . , K}, which indexes
the arms. Let μk = E[Xk,1] denote the expected reward of arm k.1 By definition,
an optimal arm is an arm having the largest expected reward. We will use k∗

to denote the index of such an arm. Let the optimal expected reward be μ∗ =
max1≤k≤K μk.

Further, let Tk(t) denote the number of times arm k is chosen by the pol-
icy during the first t plays and let It denote the arm played at time t. The
(cumulative) regret at time n is defined by

R̂n �
n∑

t=1

Xk∗,t −
n∑

t=1

XIt,TIt(t)
.

Oftentimes, the goal is to minimize the expected (cumulative) regret of the
policy, E[R̂n]. Clearly, this is equivalent to maximizing the total expected reward
achieved up to time n. It turns out that the expected regret satisfies

E[R̂n] =
K∑

k=1

E[Tk(n)]Δk,

where Δk � μ∗ − μk is the expected loss of playing arm k. Hence, an algorithm
that aims at minimizing the expected regret should minimize the expected sam-
pling times of suboptimal arms.

Early papers studied stochastic bandit problems under Bayesian assumptions
(e.g., [5]). Lai and Robbins [6] studied bandit problems with parametric un-
certainties. They introduced an algorithm that follows what is now called the
“optimism in the face of uncertainty”. Their algorithm computes upper con-
fidence bounds for all the arms by maximizing the expected payoff when the
parameters are varied within appropriate confidence sets derived for the param-
eters. Then the algorithm chooses the arm with the highest such bound. They
1

N denotes the set of natural numbers, including zero and N
+ denotes the set of

strictly positive integers.
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show that the expected regret increases logarithmically only with the number of
trials and prove that the regret is asymptotically the smallest possible up to a
sublogarithmic factor for the considered family of distributions. Agrawal [1] has
shown how to construct such optimal policies starting from the sample-mean of
the arms. More recently, Auer et al. [3] considered the case when the rewards
come from a bounded support, say [0, b], but otherwise the reward distributions
are unconstrained. They have studied several policies, most notably UCB1 which
constructs the Upper Confidence Bounds (UCB) for arm k at time t by adding
the bias factor √

2b2 log t

Tk(t − 1)

to its sample-mean. They have proven that the expected regret of this algorithm
satisfies

E[R̂n] ≤ 8
(∑

k:μk<μ∗
b2

Δk

)
log(n) + O(1). (1)

In the same paper they propose UCB1-NORMAL, that is designed to work with
normally distributed rewards only. This algorithm estimates the variance of the
arms and uses these estimates to refine the bias factor. They show that for this
algorithm when the rewards are indeed normally distributed with means μk and
variances σ2

k,

E[R̂n] ≤ 8
∑

k:μk<μ∗

(
32σ2

k

Δk
+ Δk

)
log(n) + O(1). (2)

Note that one major difference of this result and the previous one is that
the regret-bound for UCB1 scales with b2, while the regret bound for UCB1-
NORMAL scales with the variances of the arms. First, let us note that it can
be proven that the scaling behavior of the regret-bound with b is not a proof
artifact: The expected regret indeed scales with Ω(b2). Since b is typically just
an a priori guess on the size of the interval containing the rewards, which might
be overly conservative, it is desirable to lessen the dependence on it.

Auer et al. introduced another algorithm, UCB1-Tuned, in the experimental
section of their paper. This algorithm, similarly to UCB1-NORMAL uses the
empirical estimates of the variance in the bias sequence. Although no theoretical
guarantees were derived for UCB1-Tuned, this algorithm has been shown to
outperform the other algorithms considered in the paper in essentially all the
experiments. The superiority of this algorithm has been reconfirmed recently in
the latest Pascal Challenge [4]. Intuitively, algorithms using variance estimates
should work better than UCB1 when the variance of some suboptimal arms is
much smaller than b2, since these arms will be less often drawn: suboptimal arms
are more easily spotted by algorithms using variance estimates.

In this paper we study the regret of UCB-V, which is a generic UCB algorithm
that use variance estimates in the bias sequence. In particular, the bias sequences
of UCB-V take the form

√
2Vk,Tk(t−1)ETk(t−1),t

Tk(t − 1)
+ c

3bETk(t−1),t

Tk(t − 1)
,
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where Vk,s is the empirical variance estimate for arm k based on s samples, E
(viewed as a function of (s, t)) is a so-called exploration function for which a
typical choice is Es,t = ζ log(t) (thus in this case, E independent of s). Here
ζ, c > 0 are tuning parameters that can be used to control the behavior of the
algorithm.

One major result of the paper (Corollary 1) is a bound on the expected regret
that scales in an improved fashion with b. In particular, we show that for a
particular settings of the parameters of the algorithm,

E[R̂n] ≤ 10
∑

k:μk<μ∗

(
σ2

k

Δk
+ 2b

)
log(n).

The main difference to the bound (1) is that b2 is replaced by σ2
k, though b still

appears in the bound. This is indeed the major difference to the bound (2).2

In order to prove this result we will prove a novel tail bound on the sample
average of i.i.d. random variables with bounded support that, unlike previous
similar bounds, involves the empirical variance and which may be of independent
interest (Theorem 1). Otherwise, the proof of the regret bound involves the
analysis of the sampling times of suboptimal arms (Theorem 2), which contains
significant advances compared with the one in [3]. This way we obtain results
on the expected regret for a wide class of exploration functions (Theorem 3).
For the “standard” logarithmic sequence we will give lower limits on the tuning
parameters: If the tuning parameters are below these limits the loss goes up
considerably (Theorems 4,5).

The second major contribution of the paper is the analysis of the risk that
the studied upper confidence based policies have a regret much higher than its
expected value. To our best knowledge no such analysis existed for this class
of algorithms so far. In order to analyze this risk, we define the (cumulative)
pseudo-regret at time n via

Rn =
K∑

k=1

Tk(n)Δk.

Note that the expectation of the pseudo-regret and the regret are the same:
E[Rn] = E[R̂n]. The difference of the regret and the pseudo-regret comes from the
randomness of the rewards. Sections 4 and 5 develop high probability bounds for
the pseudo-regret . The same kind of formulae can be obtained for the cumulative
regret (see Remark 2 p.162).

Interestingly, our analysis revealed some tradeoff that we did not expect: As
it turns out, if one aims for logarithmic expected regret (or, more generally, for
subpolynomial regret) then the regret does not necessarily concentrate expo-
nentially fast around its mean (Theorem 7). In fact, this is the case when with
positive probability the optimal arm yields a reward smaller than the expected

2 Although this is unfortunate, it is possible to show that the dependence on b is
unavoidable.
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reward of some suboptimal arm. Take for example two arms satisfying this con-
dition and with μ1 > μ2: the first arm is the optimal arm and Δ2 = μ1 −μ2 > 0.
Then the distribution of the pseudo-regret at time n will have two modes, one
at Ω(log n) and the other at Ω(Δ2n). The probability mass associated with this
second mass will decay polynomially with n where the rate of decay depends on
Δ2. Above the second mode the distribution decays exponentially. By increasing
the exploration rate the situation can be improved. Our risk tail bound (The-
orem 6) makes this dependence explicit. Of course, increasing exploration rate
increases the expected regret. This illustrates the tradeoff between the expected
regret and the risk of achieving much worse than the expected regret. One les-
son is thus that if in an application risk is important then it might be better to
increase the exploration rate.

In Section 5, we study a variant of the algorithm obtained by Es,t = Es.
In particular, we show that with an appropriate choice of Es = Es(β), for any
0 < β < 1, for an infinite number of plays, the algorithm achieves finite cumu-
lative regret with probability 1 − β (Theorem 8). Hence, we name this variant
PAC-UCB (“Probably approximately correct UCB”). Besides, for a finite time-
horizon n, choosing β = 1/n then yields a logarithmic bound on the regret that
fails with probability O(1/n) only. This should be compared with the bound
O(1/ log(n)a), a > 0 obtained for the standard choice Es,t = ζ log t in Corol-
lary 2. Hence, we conjecture that knowing the time horizon might represent a
significant advantage.

Due to limited space, some of the proofs are absent from this paper. All the
proofs can be found in the extended version [2].

2 The UCB-V Algorithm

For any k ∈ {1, . . . , K} and t ∈ N, let Xk,t and Vk,t be the empirical estimates
of the mean payoff and variance of arm k:

Xk,t � 1
t

t∑
i=1

Xk,i and Vk,t � 1
t

t∑
i=1

(Xk,i − Xk,t)2,

where by convention Xk,0 � 0 and Vk,0 � 0. We recall that an optimal arm is
an arm having the best expected reward k∗ ∈ argmaxk∈{1,...,K} μk. We denote
quantities related to the optimal arm by putting ∗ in the upper index.

In the following, we assume that the rewards are bounded. Without loss of
generality, we may assume that all the rewards are almost surely in [0, b], with
b > 0. We summarize our assumptions on the reward sequence here:

Assumptions: Let K > 2, ν1, . . . , νK distributions over reals with support
[0, b]. For 1 ≤ k ≤ K, let {Xk,t} ∼ νk be an i.i.d. sequence of random variables
specifying the rewards for arm k.3 Assume that the rewards of different arms
are independent of each other, i.e., for any k, k′, 1 ≤ k < k′ ≤ K, t ∈ N

+,
3 The i.i.d. assumption can be relaxed, see e.g., [7].
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the collection of random variables, (Xk,1, . . . , Xk,t) and (Xk′,1, . . . , Xk′,t), are
independent of each other.

2.1 The Algorithm

Let c ≥ 0. Let E = (Es,t)s≥0,t≥0 be nonnegative real numbers such that for
any s ≥ 0, the function t �→ Es,t is nondecreasing. We shall call E (viewed as a
function of (s, t)) the exploration function. For any arm k and any nonnegative
integers s, t, introduce

Bk,s,t � Xk,s +

√
2Vk,sEs,t

s
+ c

3bEs,t

s
(3)

with the convention 1/0 = +∞.

UCB-V policy:
At time t, play an arm maximizing Bk,Tk(t−1),t.

Let us roughly describe the behavior of the algorithm. At the beginning (i.e.,
for small t), every arm that has not been drawn is associated with an infinite
bound which will become finite as soon as the arm is drawn. The more an arm k
is drawn, the closer the bound (3) gets close to its first term, and thus, from the
law of large numbers, to the expected reward μk. So the procedure will hopefully
tend to draw more often arms having greatest expected rewards.

Nevertheless, since the obtained rewards are stochastic it might happen that
during the first draws the (unknown) optimal arm always gives low rewards.
Fortunately, if the optimal arm has not been drawn too often (i.e., small Tk∗(t−
1)), for appropriate choices of E (when Es,t increases without bounds in t for any
fixed s), after a while the last term of (3) will start to dominate the two other
terms and will also dominate the bound associated with the arms drawn very
often. Thus the optimal arm will be drawn even if the empirical mean of the
obtained rewards, Xk∗,Tk∗ (t−1), is small. More generally, such choices of E lead
to the exploration of arms with inferior empirical mean. This is why E is referred
to as the exploration function. Naturally, a high-valued exploration function also
leads to draw often suboptimal arms. Therefore the choice of E is crucial in order
to explore possibly suboptimal arms while keeping exploiting (what looks like to
be) the optimal arm.

The actual form of Bk,s,t comes from the following novel tail bound on the
sample average of i.i.d. random variables with bounded support that, unlike
previous similar bounds (Bennett’s and Bernstein’s inequalities), involves the
empirical variance.

Theorem 1. Let X1, . . . , Xt be i.i.d. random variables taking their values in
[0, b]. Let μ = E [X1] be their common expected value. Consider the empirical
expectation Xt and variance Vt defined respectively by

Xt =
∑t

i=1 Xi

t
and Vt =

∑t
i=1(Xi − Xt)2

t
.
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Then for any t ∈ N and x > 0, with probability at least 1 − 3e−x,

|Xt − μ| ≤
√

2Vtx

t
+

3bx

t
. (4)

Furthermore, introducing

β(x, t) = 3 inf
1<α≤3

( log t

log α
∧ t

)
e−x/α, (5)

we have for any t ∈ N and x > 0, with probability at least 1 − β(x, t)

|Xs − μ| ≤
√

2Vsx

s
+

3bx

s
(6)

hold simultaneously for s ∈ {1, 2, . . . , t}.
Remark 1. The uniformity in time is the only difference between the two asser-
tions of the previous theorem. When we use (6), the values of x and t will be
such that β(x, t) is of order of 3e−x, hence there will be no real price to pay for
writing a version of (4) that is uniform in time. In particular, this means that
if 1 ≤ S ≤ t is a random variable then (6) still holds with probability at least
1 − β(x, t) and when s is replaced with S.

Note that (4) is useless for t ≤ 3 since its r.h.s. is larger than b. For any arm
k, time t and integer 1 ≤ s ≤ t we may apply Theorem 1 to the rewards
Xk,1, . . . , Xk,s, and obtain that with probability at least 1 − 3

∑∞
s=4 e−(c∧1)Es,t ,

we have μk ≤ Bk,s,t. Hence, by our previous remark at time t with high prob-
ability (for a high-valued exploration function E) the expected reward of arm k
is upper bounded by Bk,Tk(t−1),t. The user of the generic UCB-V policy has two
parameters to tune: the exploration function E and the positive real number c.

A cumbersome technical analysis (not reproduced here) shows that there are
essentially two interesting types of exploration functions:

– the ones in which Es,t depends only on t (see Sections 3 and 4).
– the ones in which Es,t depends only on s (see Section 5).

2.2 Bounds for the Sampling Times of Suboptimal Arms

The natural way of bounding the regret of UCB policies is to bound the number
of times suboptimal arms are drawn (or the inferior sampling times). The bounds
presented here significantly improve the ones used in [3]. This improvement is
necessary to get tight bounds for the interesting case where the exploration
function is logarithmic. The idea of the bounds is that the inferior sampling
time of an arm can be bounded in terms of the number of times the UCB for the
arm considered is over a some threshold value (τ in the statement below) and
the number of times the UCB for an optimal arm is below the same threshold.
Note that even though the above statements hold for any arm, they will be only
useful for suboptimal arms. In particular, for a suboptimal arm the threshold
can be chosen to lie between the payoff of an optimal arm and the payoff of the
arm considered.
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Theorem 2. Consider UCB-V. Then, after K plays, each arm has been pulled
once. Further, the following holds: Let arm k and time n ∈ N

+ be fixed. For any
τ ∈ R and any integer u > 1, we have

Tk(n) ≤ u +
∑n

t=u+K−1

(
1{∃s:u≤s≤t−1 s.t. Bk,s,t>τ}

+1{∃s∗:1≤s∗≤t−1 s.t. τ≥Bk∗,s∗,t}
)
,

(7)

hence

E [Tk(n)] ≤ u +
∑n

t=u+K−1

∑t−1
s=u P

(
Bk,s,t > τ

)
+

∑n
t=u+K−1 P

(
∃s : 1 ≤ s ≤ t − 1 s.t. Bk∗,s,t ≤ τ

)
.

(8)

Besides we have

P
(
Tk(n) > u

)
≤

∑n
t=3 P

(
Bk,u,t > τ

)
+ P

(
∃s : 1 ≤ s ≤ n − u s.t. Bk∗,s,u+s ≤ τ

)
.

(9)

Proof. The first assertion is trivial since at the beginning all arms has an infinite
UCB, which becomes finite as soon as the arm has been played once. To obtain
(7), we note that

Tk(n) − u ≤
n∑

t=u+K−1

1{It=k;Tk(t)>u} =
n∑

t=u+K−1

Zk,t,u,

where

Zk,t,u = 1{It=k; u≤Tk(t−1); 1≤Tk∗ (t−1);Bk,Tk(t−1),t≥Bk∗,Tk∗ (t−1),t}
≤ 1{∃s:u≤s≤t−1 s.t. Bk,s,t>τ} + 1{∃s∗:1≤s∗≤t−1 s.t. τ≥Bk∗,s∗,t}

Taking the expectation on both sides of (7) and using the probability union
bound, we obtain (8). Finally, (9) comes from a more direct argument that
uses the fact that the exploration function ξs,t is a nondecreasing function with
respect to t. Consider an event such that the following statements hold:

{
∀t : 3 ≤ t ≤ n s.t. Bk,u,t ≤ τ,
∀s : 1 ≤ s ≤ n − u s.t. Bk∗,s,u+s > τ.

.

Then for any 1 ≤ s ≤ n − u and u + s ≤ t ≤ n,

Bk∗,s,t ≥ Bk∗,s,u+s > τ ≥ Bk,u,t.

This implies that arm k will not be pulled a (u + 1)-th time. Therefore we have
proved by contradiction that

{
Tk(n) > u

}
⊂

({
∃t : 3 ≤ t ≤ n s.t. Bk,u,t > τ

}

∪
{
∃s : 1 ≤ s ≤ n − u s.t. Bk∗,s,u+s ≤ τ

})
,

(10)

which by taking probabilities of both sides gives the announced result.
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3 Expected Regret of UCB-V

In this section, we consider that the exploration function does not depend on s
(yet, E = (Et)t≥0 is still nondecreasing with t). We will see that as far as the
expected regret is concerned, a natural choice of Et is the logarithmic function
and that c should not be taken too small if one does not want to suffer polynomial
regret instead of logarithmic one. We derive bounds on the expected regret and
conclude by specifying natural constraints on c and Et.

Theorem 3. We have

P(Bk,s,t > μ∗) ≤ 2e−sΔ2
k/(8σ2

k+4bΔk/3), (11)

and

E[Rn] ≤
∑

k:Δk>0

{
1 + 8(c ∨ 1)En

(
σ2

k

Δ2
k

+
2b

Δk

)

+ne−En

(
24σ2

k

Δ2
k

+ 4b
Δk

)
+

n∑
t=16En

β
(
(c ∧ 1)Et, t

)}
Δk,

(12)

where we recall that β
(
(c ∧ 1)Et, t

)
is essentially of order e−(c∧1)Et (see (5) and

Remark 1).

Proof. Let E ′
n = (c ∨ 1)En. We use (8) with u being the smallest integer larger

than 8
( σ2

k

Δ2
k

+ 2b
Δk

)
E ′

n and τ = μ∗. For any s ≥ u and t ≥ 2, we have

P(Bk,s,t > μ∗) = P
(
Xk,s +

√
2Vk,sEt

s + 3bc
Et

s
> μk + Δk

)

≤ P
(
Xk,s +

√
2[σ2

k+bΔk/2]Et

s + 3bcEt

s > μk + Δk

)
+ P

(
Vk,s ≥ σ2

k + bΔk/2
)

≤ P
(
Xk,s − μk > Δk/2

)
+ P

(∑s
j=1(Xk,j−μk)2

s − σ2
k ≥ bΔk/2

)

≤ 2e−sΔ2
k/(8σ2

k+4bΔk/3),
(13)

proving (11). Here in the last step we used Bernstein’s inequality twice and in the
second inequality we used that the choice of u guarantees that for any u ≤ s < t
and t ≥ 2,

√
2[σ2

k
+bΔk/2]Et

s + 3bcEt

s ≤
√

[2σ2
k
+bΔk]E′

n

u + 3b
E′

n

u ≤
√

[2σ2
k
+bΔk]Δ2

k

8[σ2
k+2bΔk]

+ 3bΔ2
k

8[σ2
k+2bΔk]

= Δk

2

[√
2σ2

k+bΔk

2σ2
k+4bΔk

+ 3bΔk

4σ2
k+8bΔk

]
≤ Δk

2 ,

(14)

since the last inequality is equivalent to (x − 1)2 ≥ 0 with x =
√

2σ2
k+bΔk

2σ2
k+4bΔk

.

Summing up the probabilities in Equation (13) we obtain
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t−1∑
s=u

P(Bk,s,t > μ∗) ≤ 2
∞∑

s=u

e−sΔ2
k/(8σ2

k+4bΔk/3) = 2
e−uΔ2

k/(8σ2
k+4bΔk/3)

1 − e−Δ2
k/(8σ2

k+4bΔk/3)

≤
(

24σ2
k

Δ2
k

+ 4b
Δk

)
e−uΔ2

k/(8σ2
k+4bΔk/3) ≤

(
24σ2

k

Δ2
k

+ 4b
Δk

)
e−E′

n , (15)

where we have used that 1 − e−x ≥ 2x/3 for 0 ≤ x ≤ 3/4. By using (6) of
Theorem 1 to bound the other probability in (8), we obtain that

E [Tk(n)] ≤ 1 + 8E ′
n

(
σ2

k

Δ2
k

+
2b

Δk

)
+ ne−E′

n

(
24σ2

k

Δ2
k

+
4b

Δk

)
+

n∑
t=u+1

β((c ∧ 1)Et, t),

which by u ≥ 16En gives the announced result.

In order to balance the terms in (12) the exploration function should be chosen to
be proportional to log t. For this choice, the following corollary gives an explicit
bound on the expected regret:

Corollary 1. If c = 1 and Et = ζ log t for ζ > 1, then there exists a constant cζ

depending only on ζ such that for n ≥ 2

E[Rn] ≤ cζ

∑
k:Δk>0

(
σ2

k

Δk
+ 2b

)
log n. (16)

For instance, for ζ = 1.2, the result holds for cζ = 10.

Proof (Sketch of the proof). The first part, (16), follows directly from Theorem 3.
Let us thus turn to the numerical result. For n ≥ K, we have Rn ≤ b(n − 1)
(since in the first K rounds, the optimal arm is chosen at least once). As a
consequence, the numerical bound is nontrivial only for 20 logn < n − 1, so we
only need to check the result for n > 91. For n > 91, we bound the constant term
using 1 ≤ log n

log 91 ≤ a1
2b
Δk

(log n), with a1 = 1/(2 log 91) ≈ 0.11. The second term

between the brackets in (12) is bounded by a2

( σ2
k

Δ2
k

+ 2b
Δk

)
log n, with a2 = 8×1.2 =

9.6. For the third term, we use that for n > 91, we have 24n−0.2 < a3 log n,
with a3 = 24

910.2×log 91 ≈ 0.21. By tedious computations, the fourth term can
be bounded by a4

2b
Δk

(log n), with a4 ≈ 0.07. This gives the desired result since
a1 + a2 + a3 + a4 ≤ 10.

As promised, Corollary 1 gives a logarithmic bound on the expected regret that
has a linear dependence on the range of the reward, contrary to bounds for
algorithms that do not take into account the empirical variance of the rewards
(see e.g. the bound (1) that holds for UCB1).

The previous corollary is well completed by the following result, which essen-
tially says that we should not use Et = ζ log t with ζ < 1.

Theorem 4. Consider Et = ζ log t and let n denote the total number of draws.
Whatever c is, if ζ < 1, then there exist some reward distributions (depending
on n) such that
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– the expected number of draws of suboptimal arms using the UCB-V algorithm
is polynomial in the total number of draws

– the UCB-V algorithm suffers a polynomial loss.

So far we have seen that for c = 1 and ζ > 1 we obtain a logarithmic regret, and
that the constant ζ should not be taken below 1 (whatever c is) without risking
to suffer polynomial regret. Now we consider the last term in Bk,s,t, which is
linear in the ratio Et/s, and show that this term is also necessary to obtain a
logarithmic regret, since we have:

Theorem 5. Consider Et = ζ log t. Whatever ζ is, if cζ < 1/6, there exist
probability distributions of the rewards such that the UCB-V algorithm suffers a
polynomial loss.

To conclude the above analysis, natural values for the constants appearing in
the bound are the following ones

Bk,s,t � Xk,s +

√
2Vk,s log t

s
+

b log t

2s
.

This choice corresponds to the critical exploration function Et = log t and to
c = 1/6, that is, the minimal associated value of c in view of the previous
theorem. In practice, it would be unwise (or risk seeking) to use smaller constants
in front of the last two terms.

4 Concentration of the Regret

In real life, people are not only interested in the expected rewards that they
can obtain by some policy. They also want to estimate probabilities of obtaining
much less rewards than expected, hence they are interested in the concentra-
tion of the regret. This section starts with the study of the concentration of the
pseudo-regret, since, as we will see in Remark 2 p.162, the concentration proper-
ties of the regret follow from the concentration properties of the pseudo-regret.

We still assume that the exploration function does not depend on s and that
E = (Et)t≥0 is nondecreasing. Introduce

β̃n(t) � 3 min
α≥1 M∈N

s0=0<s1<···<sM=n
s.t. sj+1≤α(sj+1)

M−1∑
j=0

e−
(c∧1)Esj+t+1

α . (17)

We have seen in the previous section that in order to obtain logarithmic
expected regret, it is natural to take a logarithmic exploration function. In this
case, and also when the exploration function goes to infinity faster than the
logarithmic function, the complicated sum in (17), up to second order logarithmic
terms, is of the order e−(c∧1)Et. This can be seen by considering (disregarding
rounding issues) the geometric grid sj = αj with α close to 1. The next theorem
provides a bound for the tails of the pseudo-regret.
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Theorem 6. Let

vk � 8(c ∨ 1)
(

σ2
k

Δ2
k

+
4b

3Δk

)
, r0 �

∑
k:Δk>0

Δk

(
1 + vkEn

)
.

Then, for any x ≥ 1, we have

P
(
Rn > r0x

)
≤

∑
k:Δk>0

{
2ne−(c∨1)Enx + β̃n(�vkEnx�)

}
, (18)

where we recall that β̃n(t) is essentially of order e−(c∧1)Et (see the above discus-
sion).4

Proof (sketch of the proof). First note that

P
(
Rn > r0x

)
= P

{ ∑
k:Δk>0

ΔkTk(n) >
∑

k:Δk>0

Δk(1 + vkEn)x
}

≤
∑

k:Δk>0

P

{
Tk(n) > (1 + vkEn)x

}
.

Let E ′
n = (c∨1)En. We use (9) with τ = μ∗ and u = �(1 + vkEn)x� ≥ vkEnx. From

(11) of Theorem 3, we have P(Bk,u,t > μ∗) ≤ 2e−uΔ2
k/(8σ2

k+4bΔk/3) ≤ 2e−E′
nx.

To bound the other probability in (9), we use α ≥ 1 and the grid s0, . . . , sM

realizing the minimum of (17) when t = u. Let Ij = {sj + 1, . . . , sj+1}. Then

P
(
∃s : 1 ≤ s ≤ n − u s.t. Bk∗,s,u+s ≤ μ∗) ≤

M−1∑
j=0

P
(
∃s ∈ Ij s.t. Bk∗,s,sj+u+1 ≤ μ∗)

≤
M−1∑
j=0

P
(
∃s ∈ Ij s.t. s(Xk∗,s − μ∗) +

√
2sVk∗,sEsj+u+1 + 3bcEsj+u+1 ≤ 0

)

≤ 3
M−1∑
j=0

e−
(c∧1)Esj+u+1

α = β̃n(u) ≤ β̃n(�vkEnx�),

where the second to last inequality comes from an appropriate union bound
argument (see [2] for details).

When En ≥ log n, the last term is the leading term. In particular, when c = 1
and Et = ζ log t with ζ > 1, Theorem 6 leads to the following corollary, which
essentially says that for any z > γ log n with γ large enough,

P
(
Rn > z

)
≤ C z−ζ,

for some constant C > 0:
4 Here �x� denotes the largest integer smaller or equal to x.
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Corollary 2. When c = 1 and Et = ζ log t with ζ > 1, there exist κ1 > 0 and
κ2 > 0 depending only on b, K, (σk)k∈{1,...,K}, (Δk)k∈{1,...,K} satisfying that for
any ε > 0 there exists Γε > 0 (tending to infinity when ε goes to 0) such that for
any n ≥ 2 and any z > κ1 log n

P
(
Rn > z

)
≤ κ2

Γε log z

zζ(1−ε)

Since the regret is expected to be of order log n the condition z = Ω(log n) is not
an essential restriction. Further, the regret concentration, although increasing
with ζ, is pretty slow. For comparison, remember that a zero-mean martingale
Mn with increments bounded by 1 would satisfy P(Mn > z) ≤ exp(−2z2/n).
The slow concentration for UCB-V happens because the first Ω(log(t)) choices
of the optimal arm can be unlucky, in which case the optimal arm will not be
selected any more during the first t steps. Hence, the distribution of the regret
will be of a mixture form with a mode whose position scales linearly with time
and which decays only at a polynomial rate, which is controlled by ζ.5 This
reasoning relies crucially on that the choices of the optimal arm can be unlucky.
Hence, we have the following result:

Theorem 7. Consider Et = ζ log t with cζ > 1. Let k̃ denote the second optimal
arm. If the essential infimum of the optimal arm is strictly larger than μk̃, then
the pseudo-regret has exponentially small tails. Inversely, if the essential infimum
of the optimal arm is strictly smaller than μk, then the pseudo-regret has only
polynomial tail.

Remark 2. In Theorem 6 and Corollary 2, we have considered the pseudo-regret:
Rn =

∑K
k=1 Tk(n)Δk instead of the regret R̂n �

∑n
t=1 Xk∗,t −

∑n
t=1 XIt,TIt (t).

Our main motivation for this was to provide as simple as possible formulae and
assumptions. The following computations explains that when the optimal arm
is unique, one can obtain similar contration bounds for the regret. Consider the
interesting case when c = 1 and Et = ζ log t with ζ > 1. By modifying the
analysis slightly in Corollary 2, one can get that there exists κ1 > 0 such that
for any z > κ1 log n, with probability at least 1 − z−1, the number of draws
of suboptimal arms is bounded by C z for some C > 0. This means that the
algorithm draws an optimal arm at least n − C z times. Now if the optimal arm
is unique, this means that n − Cz terms cancel out in the summations of the
definition of the regret. For the Cz terms which remain, one can use standard
Bernstein inequalities and union bounds to prove that with probability 1−Cz−1,
we have R̂n ≤ Rn + C′√z. Since the bound on the pseudo-regret is of order z
(Corollary 2), a similar bound holds for the regret.

5 PAC-UCB

In this section, we consider that the exploration function does not depend on
t: Es,t = Es. We show that for an appropriate sequence (Es)s≥0, this leads to
5 Note that entirely analogous results hold for UCB1.
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an UCB algorithm which has nice properties with high probability (Probably
Approximately Correct), hence the name of it. Note that in this setting, the
quantity Bk,s,t does not depend on the time t so we will simply write it Bk,s.
Besides, in order to simplify the discussion, we take c = 1.

Theorem 8. Let β ∈ (0, 1). Consider a sequence (Es)s≥0 satisfying Es ≥ 2 and

4K
∑

s≥7 e−Es ≤ β. (19)

Consider uk the smallest integer such that

uk

Euk
>

8σ2
k

Δ2
k

+ 26b
3Δk

. (20)

With probability at least 1 − β, the PAC-UCB policy plays any suboptimal arm
k at most uk times.

Let q > 1 be a fixed parameter. A typical choice for Es is

Es = log(Ksqβ−1) ∨ 2, (21)

up to some additive constant ensuring that (19) holds. For this choice, Theorem 8
implies that for some positive constant κ, with probability at least 1−β, for any
suboptimal arm k (i.e., Δk > 0), its number of play is bounded by

Tk,β � κ
( σ2

k

Δ2
k

+
1

Δk

)
log

[
K

( σ2
k

Δ2
k

+
b

Δk

)
β−1

]
,

which is independent of the total number of plays! This directly leads to the
following upper bound on the regret of the policy at time n

∑K
k=1 Tk(n)Δk ≤

∑
k:Δk>0 Tk,βΔk. (22)

One should notice that the previous bound holds with probability at least 1 − β
and on the complement set no small upper bound is possible: one can find a
situation in which with probability of order β, the regret is of order n (even if
(22) holds with probability greater than 1−β). More formally, this means that the
following bound cannot be essentially improved (unless additional assumptions
are imposed):

E[Rn] =
K∑

k=1

E[Tk(n)]Δk ≤ (1 − β)
∑

k:Δk>0

Tk,βΔk + βn

As a consequence, if one is interested in having a bound on the expected regret
at some fixed time n, one should take β of order 1/n (up to a logarithmic factor):

Theorem 9. Let n ≥ 7 be fixed. Consider the sequence Es = log[Kn(s + 1)].
For this sequence, the PAC-UCB policy satisfies

– with probability at least 1− 4 log(n/7)
n , for any k : Δk > 0, the number of plays

of arm k up to time n is bounded by 1 +
( 8σ2

k

Δ2
k

+ 26b
3Δk

)
log(Kn2).

– the expected regret at time n satisfies

E[Rn] ≤
∑

k:Δk>0

( 24σ2
k

Δk
+ 30b

)
log(n/3). (23)
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6 Open Problem

When the horizon time n is known, one may want to choose the exploration
function E depending on the value of n. For instance, in view of Theorems 3 and 6,
one may want to take c = 1 and a constant exploration function E ≡ 3 log n. This
choice ensures logarithmic expected regret and a nice concentration property:

P

{
Rn > 24

∑
k:Δk>0

(
σ2

k

Δk
+ 2b

)
log n

}
≤ C

n . (24)

This algorithm does not behave as the one which simply takes Es,t = 3 log t.
Indeed the algorithm with constant exploration function Es,t = 3 logn concen-
trates its exploration phase at the beginning of the plays, and then switches
to exploitation mode. On the contrary, the algorithm which adapts to the time
horizon explores and exploits during all the time interval [0;n]. However, in view
of Theorem 7, it satisfies only

P

{
Rn > 24

∑
k:Δk>0

( σ2
k

Δk
+ 2b

)
log n

}
≤ C

(log n)C
.

which is significantly worse than (24). The open question is: is there an algorithm
that adapts to time horizon which has a logarithmic expected regret and a
concentration property similar to (24)? We conjecture that the answer is no.
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Abstract. Following the perturbed leader (fpl) is a powerful technique
for solving online decision problems. Kalai and Vempala [1] rediscovered
this algorithm recently. A traditional model for online decision problems
is the multi-armed bandit. In it a gambler has to choose at each round
one of the k levers to pull with the intention to minimize the cumulated
cost. There are four versions of the nonstochastic optimization setting
out of which the most demanding one is a game played against an adap-
tive adversary in the bandit setting. An adaptive adversary may alter its
game strategy of assigning costs to decisions depending on the decisions
chosen by the gambler in the past. In the bandit setting the gambler only
gets to know the cost of the choice he made, rather than the costs of all
available alternatives. In this work we show that the very straightfor-
ward and easy to implement algorithm Adaptive Bandit fpl can attain
a regret of O(

√
T ln T ) against an adaptive adversary. This regret holds

with respect to the best lever in hindsight and matches the previous best
regret bounds of O(

√
T lnT ).

1 Introduction

Following the perturbed leader (fpl) is a natural and straightforward approach
that can be applied in a wide variety of online decision problems, where costs
associated with future decisions are not known [1,2]. In fpl one simply chooses
the decision that has fared the best in the earlier rounds (the leader). In order to
cope with an adversary, the necessary randomization is implemented by adding
a perturbation to the total costs prior to selecting the leader. We have previously
shown that fpl will attain an expected regret O(

√
T ) in T rounds against an

oblivious (non-adaptive) adversary in a bandit version of the expert setting [3].1

In this paper we study the performance of the fpl algorithm when faced with
an adaptive adversary in the multi-armed bandit model. Dani and Hayes [4]
give an example where the exp3 algorithm of Auer et al. [5] can attain, with a
constant probability, a regret of Ω(T 2/3) against an adaptive adversary. Their
1 In this paper, instead of the bandit version of the expert setting, we talk about the

multi-armed bandit model. However, we do not distinguish the two settings in any
way.

M. Hutter, R.A. Servedio, and E. Takimoto (Eds.): ALT 2007, LNAI 4754, pp. 166–180, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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argument applies as such to our earlier fpl algorithm [3]. However, a small
modification to the algorithm lets us circumnavigate this lower bound.

In this paper we introduce a new fpl algorithm that matches the best regret
bound O(

√
T ln T ) of the best algorithms for this problem [6,4]. The new algo-

rithm is the same as our earlier one, except that instead of using an unbiased
estimate of the true cost vector, it uses one which guarantees that we almost
never estimate the cost of a lever too high. Thus, it is difficult to hide the ac-
tual cost under the variance of the estimate of the cost. This method does not
produce too much perturbation to the estimated costs, leading to a good regret
bound. This technique resembles that of Auer [6], who modified exp3 algorithm
to have O(

√
T ln T ) regret against an adaptive adversary.

In short, the contribution of our algorithm is that it is the first fpl algorithm
in the multi-armed bandit model that is O(

√
T ln T ) competitive against an

adaptive adversary. In addition, the terms in the regret bound are somewhat
lower than the previous expected regrets of the algorithms by Auer [6] and Dani
and Hayes [4].

In the following section we briefly recapitulate the multi-armed bandit model.
In Section 3 we describe the fpl framework and the online geometric opti-
mization problem in more detail. We also review related work. Section 4, then,
introduces the Adaptive Bandit fpl algorithm. Its regret bound is analyzed in
Section 5. Some proofs are deferred to Appendix A. Finally, Section 6 concludes
this paper.

2 Multi-armed Bandit Model

Multi-armed bandit [7] is a formulation for the exploration-exploitation dilemma:
Whether a gambler should stick with the lever of a slot machine that has paid off
best so far or should he go looking for a a better one among those that were not
tried yet. The gambler’s trade-off is in wasting effort on exploring unprofitable
alternatives versus risking to miss a superior lever. This online optimization
problem has been under scrutiny for over fifty years [7,2] and is finally starting to
be well understood [8,5,4,9]. The early research on the multi-armed bandit model
concentrated on studying stochastic and probabilistic slot machines, leaving the
gambler to learn a good play strategy (for a review and references see [5]).
The recent research, on the other hand, has deemed such machines inadequate
to model all situations of interest [5], turning instead to study adversarial slot
machines and randomized algorithms to play against them.

Table 1. The four variations of the nonstochastic optimization problem

Oblivious Adversary Adaptive Adversary
Full Information OFI AFI

Bandit Setting OBS ABS
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There are four different variations of this iterated zero-sum two-player game
between the gambler and the k-armed slot machine (see Table 1). The gambler
may be told the payoff of each lever in each round or, more realistically, he may
know only the result of the lever that he chose to play. The former model is the
full information game, while the latter one is known as the bandit setting. The
slot machine’s payoff may be insensitive to the gambler’s actions (i.e., it can as
well be chosen in advance), in which case we have an oblivious (non-adaptive)
adversary, or it may depend on the gambler’s earlier choices and then the slot
machine is an adaptive adversary. In this paper we are concerned with the most
demanding setting out of these alternatives— ABS.

Gambling at a multi-armed bandit is a zero-sum game because the gam-
bler’s losses equal the winnings of the casino. If the duration of the game is not
restricted, the gambler’s total loss clearly has no bounds. Therefore, his perfor-
mance is usually measured as the regret ; the difference between his actual loss
on the T rounds played and the single best lever in hindsight. With respect to
this performance measure the gambler can do almost as well as the best static
decision. To formulate, let �t ∈ { 1, . . . , k } be the lever chosen by the gambler
at round (or turn) t ∈ { 1, . . . , T }. Simultaneously with the gambler’s decision
the adversary assigns costs ct = 〈c1,t, . . . , ck,t〉 to the levers. Of course, the costs
need to be restricted somehow, because otherwise it is possible to suffer an un-
bounded loss on one lever pull. Let us assume that the costs are normalized to
the range [0, 1].

After both parties are ready, the gambler’s choice is communicated to the
adversary and (in the bandit setting) the gambler learns the cost c�t,t of the
lever he played. Eventually, when all T rounds have been played, the gambler
has suffered a total loss

∑T
t=1 c�t,t. The best lever j ∈ { 1, . . . , k } in hindsight is

the one that minimizes
∑T

t=1 cj,t. Hence, the performance measure regret is

T∑
t=1

c�t,t − min
j∈{ 1,...,k }

T∑
t=1

cj,t.

In the OFI case the optimal expected regret bound Θ(
√

T ln k) can be ob-
tained by Freund and Schapire’s [8] hedge algorithm, a variant of the weighted

majority algorithm [10]. The same bound directly also holds in the AFI case
[11,12]. In the bandit setting the situation is different; an adaptive adversary is
strictly more powerful than an oblivious one [11].

For the oblivious bandit setting Auer et al. [5] put forward the exp3 algorithm
which is similar to the hedge algorithm. Dani and Hayes [4] note that while exp3

guarantees that
E(regret vs. a lever i) = O(

√
kT ln k),

for a certain adaptive adversary it unfortunately holds that

E(regret vs. the best lever) = Ω(T 2/3).

Auer [6] has demonstrated how to modify the exp3 algorithm to obtain a regret
of O(

√
kT ln T ) against an adaptive adversary. Dani and Hayes also give an
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algorithm called accounts that has a regret of O(
√

kT ln T ) against an adaptive
adversary, although, with high constant terms.

3 Online Geometric Optimization and Following the
Perturbed Leader

In the generalization of the problem— online geometric optimization [1] — an
algorithm has to choose, in each round t ∈ { 1, . . . , T }, a vector xt from a fixed
decision set SD ⊂ R

d. The adversary simultaneously chooses a cost vector ct

from a fixed cost set SC ⊂ R
d. The loss of the algorithm at round t is the inner

product xt · ct and its goal is to minimize regret

T∑
t=1

xt · ct − min
x∗∈SD

T∑
t=1

x∗ · ct. (1)

In order to formulate the multi-armed bandit model in the same inner product loss
setting, we can present the gambler’s choice of a lever as an indicator vector; one
in which all elements are zero except the one corresponding to the chosen lever.

There are a number of online problems that fit the geometric setting; e.g., on-
line routing [1], online set cover [13], and online traveling salesman problem [13].
The usefulness of this model stems from the fact that there are algorithms with
regret bounds depending on the dimension of the vector space of the decisions.
In the above-mentioned problems the costs between different decisions can be
linearly related and, hence, the dimension of the decision space is lower than the
number of decisions.

Kalai and Vempala [1] showed that online geometric decision problems have
efficient solutions, given an oracle for the offline version of the problem. They
reintroduced the fpl algorithm, which selects a decision based on past cost
vectors. Originally this method was proposed by Hannan [2] already fifty years
ago. In short, the algorithm selects the best decision for the past cost vectors
which are perturbed by a random vector. Zinkevich [14] has proposed another
approach for solving the online geometric setting, but fpl is more relevant when
the space of the decision vectors is not convex.

The regret bound of fpl in the full information setting depends on the struc-
ture of the decision vector space SD and the cost vector space SC . The following
restrictions apply. There is a bound on

– the diameter of the decision set: ‖xt − x′
t‖1 ≤ D for all xt, x

′
t ∈ SD,

– the cost set: ‖ct‖1 ≤ A for any ct ∈ SC , and
– the maximum cost: |ct · xt| ≤ R.

Let opt(c) be the optimal decision for a cost vector c. We abbreviate the
sum of cost vectors up to the time step t by c1:t =

∑t
i=1 ci. Hence, if T

is the total number of rounds, then opt(c1:T ) is the best static decision and
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Table 2. Multiplicative fpl
∗ [1]

On turn t:

1. Choose a random perturbation vector μt ∝ exp(−εt ‖x‖1) drawn from the expo-
nential distribution, in which εt = O(1/

√
t).

2. Pick decision opt(c1:t−1 + μt).

opt-cost(c1:T ) = opt(c1:T ) · c1:T is its cost. With these restrictions the fpl

algorithm (see Table 2) achieves a cost of

(1 + 2εA) opt-cost(c1:T ) +
D ln d

ε

for a parameter ε < 1 [1]. Thus, the regret of the fpl algorithm is O(
√

DRAT )
when a suitable ε is plugged into the above formula.

The regret bound of fpl does not depend on the number of different decisions,
whereas the regret bound of weighted majority depends on the number of
experts. If the decisions are independent — i.e., experts of weighted major-

ity — the difference between fpl and weighted majority is of implementa-
tion. Although the regret bound of fpl [1] is a constant factor

√
2 worse than

that of hedge, Kalai has observed that we can choose the perturbation vector
so that the decisions of fpl and hedge are identical [4]. Unfortunately, to the
best of our knowledge there is no proof that this method works in the more
general online geometric optimization.

Hutter and Poland have shown that many of the results obtained in the ex-
pert setting can be elegantly proved also in the fpl setting, albeit with worse
constants [12].

3.1 Bandit FPL

fpl solves a full information problem (OFI or AFI). For the bandit setting,
where only the cost of one decision per time step is revealed, there are several
variations of fpl [15,16]. Bandit fpl algorithms typically choose at each time
step between exploration and exploitation, like algorithms based on weighted

majority. The exploration rate γt ∈ [0, 1] determines which option to choose
at step t. With probability γt one explores a representative sample from the
decisions and with probability 1 − γt one exploits by choosing the decision that
appears best in light of the (estimated) past costs.

Awerbuch and Kleinberg [15] considered the oblivious bandit setting and their
algorithm has a regret of the order O(T 2/3). They also give an algorithm with the
same regret bound designed specifically for the shortest online routing problem
in the ABS case. McMahan and Blum [16] obtained a regret of O(T 3/4

√
ln T )

for the bandit fpl in the general ABS case. Dani and Hayes [11] improved the
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regret of McMahan and Blum’s algorithm in the ABS case to O(T 2/3). Note that
the above bounds omit dependences on other factors than T , which are typically
quite complicated.

These algorithms for the geometric bandit setting, in general, estimate the
cost vector only during exploration turns and ignore the costs on exploitation
turns. If we want to get below the O(T 2/3) regret, it is necessary to use also
the information obtained during exploitation turns [11]. Currently no general
algorithm for the online geometric bandit setting exists with O(

√
T ) regret,

but there are customized algorithms for particular problems, like for the online
shortest routing, which achieve a regret close to O(

√
T ) [17].

In [3] we showed that a fpl variant— Bandit fpl (b-fpl) — can attain O(
√

T )
expected regret in the OBS setting when restricted to the expert framework. In
this paper we will turn to the ABS case, this time restricting our considerations
to the multi-armed bandit model. We will prove that a fpl algorithm— Adaptive
Bandit fpl, ab-fpl — attains an expected regret O(

√
kT ln T ). Thus, we match

the asymptotic bound O(
√

k T ln T ) of the accounts algorithm of Dani and
Hayes [4] and of the algorithm given by Auer [6], but our hidden terms are
somewhat lower. Although ab-fpl is currently restricted to multi-armed bandits,
we hope that the idea in ab-fpl is general enough to be implemented in a b-fpl

algorithm that has O(
√

T ) regret in the online geometric bandit setting against
a non-adaptive adversary.

4 Adaptive Bandit FPL

In this and the following section we show how fpl can be applied against an
adaptive adversary in the multi-armed bandit setting. An argument by Dani
and Hayes [4] shows that the b-fpl [3] algorithm cannot attain a regret of the
order O(

√
T ) in the ABS case and that its worst-case regret is Ω(T 2/3). We now

demonstrate that it is possible to modify the b-fpl algorithm so that it is com-
petitive against an adaptive adversary. We call the resulting algorithm Adaptive
Bandit fpl (ab-fpl). The modified algorithm ab-fpl is given in Table 3.

In short, ab-fpl is the same as b-fpl, except that instead of using an unbiased
estimate ĉ1:t of the real vector c1:t it uses ĉ′1:t = ĉ1:t − λσt

√
ln t, where λ is a

small constant and σt is a vector that consists of upper bounds to conditional
standard deviations of items in ĉ1:t. Intuitively, this guarantees that we almost
never estimate the cost of a lever too high and, thus, it is difficult to hide
the actual cost under the variance of the estimate of the cost. Fortunately this
method does not produce a too great perturbation to the estimated costs, making
it possible to have a reasonable regret bound as we will show below. Similar work
has been done by Auer [6] with weighted majority style algorithms. Let us
first state the regret bound explicitly.

Theorem 1. The expected regret of ab-fpl against the best lever in hindsight
is at most O(

√
T ln T ) against an adaptive adversary. Asymptotically the most

significant term is 5
√

k T ln T .



172 J. Kujala and T. Elomaa

Table 3. Adaptive Bandit fpl (ab-fpl)

– Let there be k levers {1, . . . k} and let pi,t be the probability of choosing lever i
at turn t. We will describe how to compute these probabilities in Section 5.3.

– Let ci,t be the cost of lever i at turn t and let vector ct consists of the costs for all
levers.

– Moreover, let c1:t be the sum of cost vectors up to turn t.
– Let opt(c) be the indicator vector of some minimal value in c; i.e., opt(c) = i if i

is a minimal value in c.
– Define two parameters:

1. εt is intuitively the width of the perturbation vector μt used at an exploitation
turn. We use εt = εT =

√
ln T/(3

√
k T ).

2. γt = min(1, kεt) is the probability of sampling a lever uniformly at random.
– Maintain two variables:

1. Vector ĉ1:t that is an estimate of c1:t. Estimated in the usual way as in exp3

and b-fpl

ĉi,t =

{
ci,t/pi,t if i was chosen on turn t;

0 otherwise.

2. Vector σ2
t that contains upper bounds of the conditional variances of random

variables ĉi,1:t. It is defined as

σ2
i,t =

t∑
τ=1

1

pi,τ
≥

t∑
τ=1

c2
i,τ

pi,τ
− c2

i,τ =
t∑

τ=1

Var (ĉi,τ | τ − 1, . . . , 1) .

– Define ĉ′
t = ĉt − λσt

√
ln (t + 1), where λ =

√
1 +

√
2/

√
k.

On turn t:

Exploration step: With probability γt choose a lever uniformly at random.
Exploitation step: Otherwise choose a lever given by

opt
(
ĉ′
1:t−1 + μt

)
,

where μt ∝ exp(−εt ‖x‖1) is a random perturbation vector in which the elements
are drawn from the two-sided exponential distribution.

5 Proof for the Regret Bound

We first outline the proof of Theorem 1. First we observe that the cumulated
cost of ab-fpl during the exploitation steps is upper bounded by

E

(
T∑

t=1

opt
(
ĉ′1:t−1 + μt

)
· ct

)
.



Following the Perturbed Leader to Gamble at Multi-armed Bandits 173

We further bound this with
opt-cost(c1:T ) + O(

√
T ln T ).

The expected cumulative cost during the exploration steps in ab-fpl is upper
bounded by

∑T
t=1 γt = O(

√
T ln T ), and hence for all steps we get a regret bound

that is of the order O(
√

T ln T ).
We go through the following steps:

1. fpl run on unbiased estimates ĉt of ab-fpl has the same expected regret as
ab-fpl on actual costs. Several authors have made this observation [12,11].
It can be proved using a simple calculation of expected value.

Eact

(
T∑

t=1

opt
(
ĉ′1:t−1 + μt

)
· ct

)
= EactEsim

(
T∑

t=1

opt
(
ĉ′1:t−1 + rt

)
· ĉt

)

From now on we will refer by simulated fpl to a run of the fpl algorithm
with cost vectors ĉ′t as the input. These are available after an actual run of
ab-fpl. Vectors rt are perturbations chosen by a simulated run of fpl on
vectors ĉ′t; thus, they are independently chosen from the same distribution as
perturbations μt. By Eact we denote expectation with regards to the actual
choices made by ab-fpl and the adaptive adversary. Esim, on the other
hand, refers to expectation with regards to choices made by a simulated
fpl using cost vectors ĉ′t. Hence, Eact is taken over the randomness of the
joint distribution on vectors μ1, . . . , μt and c1, . . . , ct, while Esim is taken
over the randomness of vectors r1, . . . , rt given random choices that happen
under Eact. Plain E always refers to all randomness within the scope of the
expectation operator.

When compared to the right-hand side of the above equation, in ab-fpl

we have an additional term that results from it having extra vectors σt

√
ln t−

σt−1

√
ln(t − 1) in the estimate ĉ′1:t which is used. In equations we get

E

(
T∑

t=1

opt
(
ĉ′1:t−1 + μt

)
· ct

)

= EactEsim

(
T∑

t=1

opt
(
ĉ′1:t−1 + rt

)
· ĉ′t

)

︸ ︷︷ ︸
A

+ λEactEsim

(
T∑

t=1

opt
(
ĉ′1:t−1 + rt

)
·
(
σt

√
ln t − σt−1

√
ln (t − 1)

))

︸ ︷︷ ︸
B

.

2. In Section 5.1 we show that B ≤ 2
√

k T ln T .
3. In Appendix A we bound the term A with

Eact

(
opt-cost

(
ĉ′1:T

))
+ e (e − 1)

(
k

T∑
t=1

εt +
2λ

√
T ln T√
k

)
+

2(1 + ln k)
εT

.

This bound is quite standard and uses techniques introduced earlier [1,3].
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4. Finally, by definition it holds that

opt-cost
(
ĉ′1:t

)
≤ opt(c1:t) · ĉ′1:t.

Using a martingale concentration inequality we can show that this is, with a
high probability, less than the cost of the best static decision opt-cost(c1:t).
We do this in Section 5.2.

These steps bound the cost on the exploitation steps, as argued above. In Table 3
we set the parameters γt/k = εt = εT =

√
ln T/(3

√
k T ). Counting the cost

during the sampling turns we obtain a final regret bound where asymptotically
the most significant term is

5
√

k T ln T .

The remaining terms are bounded by

2
√

2

√
T ln T√

k
+

6(1 + ln k)
√

k T√
ln T

.

Using the concentration inequality yields an additional term, but it is of the
order o(

√
T ) with a small constant factor.

5.1 Bound on the Term B

We now proceed to bound the term

B = EactEsim

(
T∑

t=1

opt
(
ĉ′1:t−1 + rt

)
·
(
σt

√
ln t − σt−1

√
ln(t − 1)

))
.

First, because σi,t grows faster than
√

ln t, the inequality

σi,t

√
ln t − σi,t−1

√
ln(t − 1) ≤ (σi,t − σi,t−1)

(√
ln t +

√
ln(t − 1)

)

holds. Recall that
√

x is concave and hence, by linearization,
√

x + h ≤ √
x +

h/(2
√

x) for any x, h > 0. Direct application of this inequality shows that for
each σi,t

σi,t − σi,t−1 ≤ 1
2pi,t σi,t−1

.

Hence, the term B is upper bounded by Eact

(√
ln T

∑T
t=1

∑k
i=1 1/σi,t

)
when the

expectation Esim is calculated. Since the function 1/
√

x is both convex and de-
creasing, it is not difficult to see that to maximize individually each

∑k
i=1 1/σi,t

all probabilities pi,τ in σi,t =
√∑t

τ=1 1/pi,τ should be set to 1/k. We can
formally prove this using an involved manipulation of Lagrange multipliers to
obtain the inequality:

Eact

(
T∑

t=1

k∑
i=1

1/σi,t

)
≤

T∑
t=1

k∑
i=1

1√
k t

≤ 2
√

k T . (2)
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Thus, we obtain the desired bound

B ≤ 2
√

k T ln T .

5.2 Bounding the Estimated Cost

We claim that with a high enough probability it holds that

opt(c1:T ) · ĉ′1:T ≤ opt-cost(c1:T ) .

Intuitively, ĉ1:T is a random variable that is concentrated to a certain degree
around its expected value and we take advantage of this in lower bounding the
vector ĉt by ĉ′t with high probability. Formally we use the following McDiarmid’s
[18] martingale concentration inequality. Note that this version of the inequality
allows us to use the conditional variances.

Theorem 2 (Theorem 3.15, p. 224, in [18]). Let X1, . . . , XT be a martingale
difference sequence and V the sum of conditional variances

V =
T∑

t=1

Var (Xt | X1, . . . , Xt−1) ,

then for every x, v ≥ 0

P

(∑
t

Xt ≥ x and V ≤ v

)
≤ exp

(
−x2

2v + 2xu/3

)
,

where u is a uniform upper bound for Xt.

We apply this inequality and set

– Xi,t = ĉi,t − ci,t,
– x = λσi,T ln T ,
– u = 1/γT , and
– v = σ2

i,T .

Note that V ≤ σ2
i,T holds always because σ2

i,T is defined to be a upper bound
of the variance of

∑T
t=1 Xi,t. Now

P

(
T∑

t=1

ĉi,t − ci,t ≥ λσi,T

√
ln T

)
≤ exp

(
−λ2 σ2

i,T ln T

2σ2
i,T + 2λσi,T

√
ln T/(3γT )

)

≤ exp
(

−λ2 ln T

2 + 2λ
√

ln T/(3kεT

√
T )

)
(3)

≤ exp
(

−λ2 ln T

2 + 2λ/
√

k

)
(4)

≤ exp

(
−λ2 ln

√
T

1 +
√

2/
√

k

)

=
1√
T

. (5)
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In Inequality 3 we use the definition γT = kεT and the fact that σi,T ≥
√

T .
In Inequality 4 we write out εT =

√
ln T/(3

√
k T ). Inequality 5 follows from

λ2 = 1+
√

2/
√

k. When this bounding is done for each of the k levers separately,
the bad case happens with probability at most k/

√
T . Even the bad case is of

the order o(T ) with extremely high probability, because σi,T ≤ T 2/3, and we
can again use the same concentration inequality. Hence,

E
(
opt(c1:T ) · ĉ′1:T − opt-cost(c1:T )

)
≤ o(

√
T ).

We do not include this term in our regret bound, because asymptotically it is
not significant.

5.3 Computing the Probabilities in ab-fpl

We need to obtain the probability pi,t of selecting lever i at turn t. On an ex-
ploitation turn the probability of selecting lever i is the probability that ĉ′i,1:t−1

plus perturbation is smaller than the corresponding value for the other levers.
Each of these values is distributed according to a two-sided exponential distri-
bution with the expected value at ĉ′j,1:t−1 for lever j. The probability that the
lever i has the lowest value is

∫ ∞
−∞ p1(x)p2(x)dx, where p1(x) is the density of

the value of lever i, and p2(x) is the probability that the values for the other
levers are higher. p2(x) is a product of cumulative distributions for the expo-
nential distribution. Hence the integral can be calculated piecewise, where the
pieces are all intervals between successive expectations ĉ′j,1:t−1. In ab-fpl we
must also account for the sampling that is done.

6 Conclusion and Discussion

We have demonstrated that the fpl algorithm can be successfully applied in the
multi-armed bandit model against an adaptive adversary with a regret of order
O(

√
T ln T ). In the general bandit geometric setting, however, the best known

regret is O(T 2/3) even against an oblivious adversary [16]. The method we have
applied is plausibly general enough to be applied to a hypothetical geometric
bandit fpl algorithm that has been designed against an oblivious adversary
with a regret of O(

√
T ).

Interesting future direction is to examine more closely what are the exact
constant factors that are achievable in the regret bounds. Constant factors are
important, because even halving the regret in an application where the cost
is expensive is a significant improvement. In Vermorel and Mohri’s [19] exper-
iments — on non-adversarial stochastically generated data— simple algorithms
outperformed those that were designed against an oblivious adversary. It is not
surprising that theoretical worst-case regret bounds are higher for more power-
ful adversaries. It would, nevertheless, be interesting to know if a better regret
could be simultaneously obtained in a case that is not worst-case.
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A Bound on the Term A

In this appendix we bound the term

A = EactEsim

(
T∑

t=1

opt
(
ĉ′1:t−1 + rt

)
· ĉ′t

)
.

Recall that Esim refers to the expectation on randomness originating from vectors
rt, i.e., a simulated run of fpl on vectors ĉ′1:t, and the adversary for the simulated
run is an oblivious one. The bound for the simulated run of fpl is similar to
what Kalai and Vempala [1] have derived against an oblivious adversary. The
difference is that in the simulated run of fpl on cost vectors ĉ′t the worst-case
cost on a single step is too large, although under expectation the worst-case cost
is small enough. The following step is different from their proof.

Lemma 1

E

(
T∑

t=1

opt
(
ĉ′1:t−1 + rt

)
· ĉ′t

)
≤ E

(
T∑

t=1

opt
(
ĉ′1:t + rt

)
· ĉ′t

)

+ e (e − 1)

(
k

T∑
t=1

εt +
2λ

√
T ln T√
k

)
.

We also need the following lemma to complete the desired bound on A.

Lemma 2 (Lemmas 1 and 3 in [1]).

Esim

(
T∑

t=1

opt
(
ĉ′1:t + rt

)
· ĉ′t

)
≤ opt-cost

(
ĉ′1:T

)
+

2 (1 + ln k)
εT

.

Applying both of these lemmas gives us the final bound on A:

Eact

(
opt-cost

(
ĉ′1:T

))
+ e (e − 1)

(
k

T∑
t=1

εt +
2λ

√
T ln T√
k

)
+

2(1 + ln k)
εT

.
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Proof (of Lemma 1). As observed in [1,3] when the perturbation vector is chosen
from the exponential distribution, the probability of selecting a lever in ab-fpl

changes in a well defined way when the cost vector ĉ′1:t changes:

e−εtδ ≤ pnew/pold ≤ eεtδ, (6)

where δ is the change in the 1-norm of the cost vector, pold was the probability
of selecting the lever before the cost vector changed, and pnew is the probability
after the cost vector changed.

Hence, if pi,t is the probability of selecting lever i at step t,

Esim

(
opt

(
ĉ′1:t−1 + rt

)
· ĉ′t

)

=
k∑

i=1

ĉ′i,t pi,t (7)

≤
k∑

i=1

ĉ′i,t pi,t+1 eεt‖ĉ′
t‖1 (8)

≤
k∑

i=1

ĉ′i,t pi,t+1

(
(1 + (e − 1) εt

∥∥ĉ′t
∥∥

1

)
(9)

≤ Esim

(
opt

(
ĉ′1:t + rt

)
· ĉ′t

)
+ (e − 1)εt

k∑
i=1

ĉi,t

∥∥ĉ′t
∥∥

1
pi,t+1. (10)

Equality 7 follows by definition, Inequality 8 is an application of Inequality 6, and
Inequality 9 follows from the behavior of the exponent function ex when x < 1.
We can assume that x < 1 because for all i ∈ { 1, . . . , k } and t ∈ { 1, . . . , T } the
probability pi,t > γt/k = εt.

Next we bound the remaining regret term on the right in Inequality 10 under
Eact:

Eact

(
k∑

i=1

ĉi,t

∥∥ĉ′t
∥∥

1
pi,t+1

)

= Eact

(
cj,t

pj,t+1

pj,t

∥∥ĉ′t
∥∥

1

)
(11)

≤ eEact

(
‖ĉt‖1 + λ

∥∥∥σt

√
ln t − σt−1

√
ln (t − 1)

∥∥∥
1

)
(12)

≤ e

(
k +

λ
√

ln t

kεt
Eact

(
k∑

i=1

1
σi,t

))
. (13)

In Equality 11 we write out the sum and j refers to the lever that was chosen
by ab-fpl. In Inequality 12 we use Inequality 6 and the fact that δ < 1 as
well as the triangle inequality

∥∥ĉ′t
∥∥

1
≤ ‖ĉt‖1 + λ

∥∥∥σt

√
ln t − σt−1

√
ln (t − 1)

∥∥∥
1
.
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Inequality 13 follows from calculation of the expectation Eact(‖ĉt‖1 | t−1, . . . , 1)
and from the following inequality, which was justified in Section 5.1,

∥∥∥σt

√
ln t − σt−1

√
ln (t − 1)

∥∥∥
1

≤
√

ln t

k∑
i=1

1
pi,tσi,t−1

.

Putting Inequalities 10 and 13 together and summing them over all turns t yields
the final regret

e (e − 1)

(
k

T∑
t=1

εt +
λ
√

ln T

k
Eact

(
T∑

t=1

k∑
i=1

1
σi,t

))

≤ e (e − 1)

(
k

T∑
t=1

εt +
2λ

√
T ln T√
k

)
.

The term under Eact was bounded in Section 5.1 by 2
√

k T in Inequality 2.
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Abstract. This paper deals with the problem of making predictions in
the online mode of learning where the dependence of the outcome yt on
the signal xt can change with time. The Aggregating Algorithm (AA)
is a technique that optimally merges experts from a pool, so that the
resulting strategy suffers a cumulative loss that is almost as good as that
of the best expert in the pool. We apply the AA to the case where the
experts are all the linear predictors that can change with time. KAARCh
is the kernel version of the resulting algorithm. In the kernel case, the
experts are all the decision rules in some reproducing kernel Hilbert space
that can change over time. We show that KAARCh suffers a cumulative
square loss that is almost as good as that of any expert that does not
change very rapidly.

1 Introduction

We consider the online protocol where on each trial t = 1, 2, . . . the learner
observes a signal xt and attempts to predict the outcome yt, which is shown to
the learner later. The performance of the learner is measured by means of the
cumulative square loss. The Aggregating Algorithm (AA), introduced by Vovk
in [1] and [2], allows us to merge experts from large pools to obtain optimal
strategies. Such an optimal strategy performs nearly as good as the best expert
from the class in terms of the cumulative loss.

In [3] the AA is applied to merge all constant linear regressors, i.e., experts θ
predicting θ′xt (it is assumed that xt and θ are drawn from R

n). The resulting
Aggregating Algorithm for Regression (AAR) (also known as the Vovk-Azoury-
Warmuth forecaster, see [4, Sect. 11.8]) performs almost as well as the best
regressor θ. In [5] the kernel version of AAR, known as the Kernel AAR (KAAR),
is introduced and a bound on its performance is derived (see also [6, Sect. 8]).
From a computational point of view the algorithm is similar to Ridge Regression.
We summarise the results concerning AAR and KAAR in Sect. 2.3.

In this paper, AA is applied to merge a wider class of predictors. We let θ
vary between trials. Consider a sequence θ1, θ2, . . .; let it make the prediction
(θ1 + θ2 + . . . + θt)′xt on trial t. We merge all predictors of this type and obtain
an algorithm which is again computationally similar to Ridge Regression. We
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c© Springer-Verlag Berlin Heidelberg 2007
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call the new algorithm the Aggregating Algorithm for Regression with Changing
dependencies (AARCh) and its kernelised version KAARCh. Clearly, our class
of experts is very large and we cannot compete in a reasonable sense with every
expert from this class. However in Sects. 4 and 5 we show that KAARCh can
perform almost as well as any regressor if the latter is not changing very rapidly,
i.e., if each ‖θt‖ is small or only a few are nonzero.

A similar problem is considered in [7], [8], and [9] for classification and regres-
sion. In these publications, this problem is referred to as the non-stationary or
shifting target problem and the corresponding bounds are called shifting bounds.
The work by Herbster and Warmuth in [7] is closest to ours. However, their meth-
ods are based on Gradient Descent and therefore their bounds are of a different
type. For instance, since our approach is based on the Aggregating Algorithm we
get a coefficent for the term representing the cumulative loss of the experts equal
to 1 (see Theorems 3 and 4), whereas those in the bounds of [7, Theorems 14–16]
are greater than 1.

In practice, KAARCh can be used to predict parameters that change slowly
with time. KAARCh is more computationally expensive than the techniques
described in [7], with time and space complexities that grow with time. This is
not desirable in an algorithm designed for online learning; however, a practical
implementation is described in [10]. Essentially, KAARCh is made to ‘forget’
older examples that do not affect the prediction too much. In [10] empirical
experiments are carried out on an artificial dataset and on the real world problem
of predicting the implied volatility of options (the name KAARCh was inspired
by the popular GARCH model for predicting volatility in finance).

2 Background

In this section we introduce some preliminaries and related material required for
our main results. As usual, all vectors are identified with one-column matrices
and B′ stands for the transpose of matrix B. We will not be specifying the size
of simple matrices like the identity matrix I when this is clear from the context.

2.1 Protocol and Loss

We can define online regression by the following protocol. At every moment in
time t = 1, 2, . . . , the value of a signal xt ∈ X arrives. Statistician (or Learner) S
observes xt and then outputs a prediction γt ∈ R. Finally, the outcome yt ∈ R

arrives. This can be summarised by the following scheme:
for t = 1, 2, . . . do

S observes xt ∈ X
S outputs γt ∈ R

S observes yt ∈ R

end for
The set X is a signal space which is assumed to be known to Statistician in
advance. We will be referring to a signal-outcome pair as an example. The per-
formance of S is measured by the sum of squared discrepancies between the
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predictions and the outcomes (known as square loss). Therefore on trial t Statis-
tician S suffers loss (yt − γt)2. Thus after T trials, the total loss of S is

LT (S) =
T∑

t=1

(yt − γt)2.

Clearly, a smaller value of LT (S) means a better predictive performance.

2.2 Linear and Kernel Predictors

If X ⊆ R
n we can consider simple linear regressors of the form θ ∈ R

n. Given a
signal x ∈ X , such a regressor makes a prediction θ′x. Linear methods are easy
to manipulate mathematically but their use in the real world is limited since
they can only model simple dependencies. One solution to this could be to map
the data to some high dimensional feature space and then find a simple solution
there. This however, can lead to what is known as the curse of dimensionality
where both the computational and generalisation performance degrades as the
number of features grow [11, Sect. 3.1].

The kernel trick (first used in this context in [12]) is now a widely used tech-
nique which can make a linear algorithm operate in feature space without the
inherent complexities. Informally, a kernel is a dot product in feature space. Typ-
ically, to transform a linear method into a nonlinear one, the linear algorithm
is first formulated in such a way that all signals appear only in dot products
(known as the dual form). Then these dot-products are replaced by kernels.

For a function k : X × X → R to be a kernel it has to be symmetric, and for
all � and all x1, . . . ,x� ∈ X , the kernel matrix K = (k(xi,xj))i,j , i, j = 1, . . . , �

must be positive semi-definite (have nonnegative eigenvalues). For every kernel
there exists a unique reproducing kernel Hilbert space (RKHS) F such that k is
the reproducing kernel of F . In fact, there is a mapping φ : X → F such that
kernels can be defined as

k(x, z) = 〈φ(x), φ(z)〉.

A RKHS on a set X is a (separable and complete) Hilbert space of real valued
functions on X comprised of linear combinations of k of the form

f(x) =
l∑

i=1

cik(vi,x),

where l is a positive integer, ci ∈ R and vi,x ∈ X , and their limits. We will be
referring to any function in the RKHS F as D. Intuitively D(x) is a decision
rule in F that produces a prediction for the object x. We will be measuring the
complexity of D by its norm ‖D‖ in F . For more information on kernels and
RKHS see, for example, [13] and [14].
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2.3 The Aggregating Algorithm (AA)

We now give an overview of the Aggregating Algorithm (AA) mostly following [3,
Sects. 1 and 2]. Let Ω be an outcome space, Γ be a prediction space and Θ be
a (possibly infinite) pool of experts. We consider the following game between
Statistician (or Learner) S, Nature, and Θ:

for t = 1, 2, . . . do
Every expert θ ∈ Θ makes a prediction γ

(θ)
t ∈ Γ

Statistician S observes all γ
(θ)
t

Statistician S outputs a prediction γt ∈ Γ
Nature outputs ωt ∈ Ω

end for
Given a fixed loss function λ : Ω × Γ → [0, ∞], Statistician aims to suffer a
cumulative loss

LT (S) =
T∑

t=1

λ(ωt, γt)

that is not much larger than the loss

LT (θ) =
T∑

t=1

λ
(
ωt, γ

(θ)
t

)

of the best expert θ ∈ Θ. The AA takes two parameters, a prior probability
distribution P0 in the pool of experts Θ and a learning rate η > 0. Let β = e−η.

We will first describe the Aggregating Pseudo Algorithm (APA) that does not
output actual predictions but generalised predictions. A generalised prediction
g : Ω → R is a mapping giving a value of loss for each possible outcome. At
every step t, the APA updates the experts’ weights so that those that suffered
large loss during the previous step have their weights reduced:

Pt(dθ) = β
λ
(

ωt,γ
(θ)
t

)
Pt−1(dθ) , θ ∈ Θ.

At time t, the APA chooses a generalised prediction by

gt(ω) = logβ

∫

Θ

β
λ
(

ω,γ
(θ)
t

)
P ∗

t−1(dθ),

where P ∗
t−1(dθ) are the normalised weights P ∗

t−1(dθ) = Pt−1(dθ)/Pt−1(Θ). This
guarantees that for any learning rate η > 0, prior P0, and T = 1, 2, . . . (see [3,
Lemma 1])

LT (APA) = logβ

∫

Θ

βLT (θ)P0(dθ). (1)

To get a prediction from the generalised prediction gt(ω) (note that we use ω
since we do not yet know the real outcome of step t, ωt) the AA uses a substitu-
tion function Σ mapping generalised predictions into Γ . A substitution function
may introduce extra loss; however, in many cases perfect substitution is possible.
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We say that the loss function λ is η-mixable if there is a substitution function
Σ such that

λ (ωt, Σ(gt(ω))) ≤ gt(ωt) (2)

on every step t, all experts’ predictions and all outcomes. The loss function λ is
mixable if it is η-mixable for some η > 0.

Suppose that our loss function is η-mixable. Using (1) and (2) we can obtain
the following upper bound on the cumulative loss of the AA:

LT (AA) ≤ logβ

∫

Θ

βLT (θ)P0(dθ).

In particular, when the pool of experts is finite and all experts are assigned
equal prior weights, we get, for any θ ∈ Θ

LT (AA) ≤ LT (θ) +
ln m

η
,

where m is the size of the pool of experts. This bound can be shown to be
optimal in a very strong sense for all algorithms attempting to merge experts’
predictions (see [2]).

The Square Loss Game. In this paper we are concerned with the (bounded)
square loss game (see [3, Sect. 2.4]), where Ω = [−Y, Y ], Y ∈ R, Γ = R,
and λ(ω, γ) = (ω − γ)2. The square loss game is η-mixable if and only if η ≤
1/(2Y 2). A perfect substitution function for this game is

γ =
g(−Y ) − g(Y )

4Y
. (3)

The Aggregating Algorithm for Regression (AAR). The AA was applied
to the problem of linear regression resulting in the Aggregating Algorithm for
Regression (AAR). AAR merges all the linear predictors that map signals to
outcomes [3, Sect. 3] (a Gaussian prior is assumed on the pool of experts). AAR
makes a prediction at time T by

γAAR = ỹ′X̃(X̃
′
X̃ + aI)−1xT ,

where a is a positive scalar, X̃ = (x1,x2, . . . ,xT )′ and ỹ = (y1, y2, . . . , yT−1, 0)′.
The main property of AAR is that it is optimal in the sense that the total loss

it suffers is only a little worse than that of any linear predictor. By the latter we
mean a strategy that predicts θ′xt on every trial t, where θ ∈ R

n is some fixed
vector. The set of all linear predictors may be identified with R

n.

Theorem 1 ([3, Theorem 1]). For any a > 0 and any point in time T ,

LT (AAR) ≤ inf
θ

(LT (θ) + a‖θ‖2) + Y 2 ln det

(
1
a

T∑
t=1

xtx′
t + I

)
.
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The Kernel Aggregating Algorithm for Regression (KAAR). KAAR,
the kernel version of AAR introduced in [5], makes a prediction for the sig-
nal xT by

γKAAR = ỹ′(K̃ + aI)−1k̃,

where

K̃ =

⎡
⎢⎣

k(x1,x1) · · · k(x1,xT )
...

. . .
...

k(xT ,x1) · · · k(xT ,xT )

⎤
⎥⎦ , and k̃ =

⎡
⎢⎣

k(x1,xT )
...

k(xT ,xT )

⎤
⎥⎦ .

Like AAR, KAAR has an optimality property. KAAR performs little worse
than any decision rule D in the RKHS induced by a kernel function k.

Theorem 2 ([5, Theorem 1] and [6, Sect. 8]). Let k be a kernel on a space X
and D be any decision rule in the RKHS induced by k. Then for every a > 0
and any point in time T ,

LT (KAAR) ≤ LT (D) + a‖D‖2 + Y 2 ln det
(

1
a
K̃ + I

)
.

Corollary 1 ([6, Sect. 8]). Under the same conditions of Theorem 2 let c =
supx∈X

√
k(x,x). Then for every a > 0, every d > 0, every decision rule D such

that ‖D‖ ≤ d and any point in time T , we get

LT (KAAR) ≤ LT (D) + ad2 +
Y 2c2T

a
.

If, moreover, T is known in advance, one can choose a = (Y c/d)
√

T and get

LT (KAAR) ≤ LT (D) + 2Y cd
√

T .

3 Algorithm

For our new method, we apply the Aggregating Algorithm (AA) to the regres-
sion problem where the experts can change with time. We call this method the
Aggregating Algorithm for Regression with Changing dependencies (AARCh).
Subsequently, we will kernelise this method to get Kernel AARCh (KAARCh).
Throughout this section we will be using the lemmas given in the appendix.

3.1 AARCh: Primal Form

The main idea behind AARCh is to apply the Aggregating Algorithm to the case
where the pool of experts is made up of all linear predictors that can change
independently with time. We assume that outcomes are bounded by Y , i.e.,
for any t, yt ∈ [−Y, Y ] (we do not require our algorithm to know Y ). We are
interested in the square loss, therefore we will be using optimal η = 1/(2Y 2) and
substitution function (3).
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An expert is a sequence θ1, θ2, . . ., that at time T predicts

x′
T (θ1 + θ2 + . . . + θT ),

where for any t, θt ∈ R
n and xT ∈ R

n. To apply the AA to this problem we need
to define a lower triangular block matrix L, and θ which is a concatenation of
all the θt for t = 1 . . . T , such that1

Lθ =

⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 · · · · · · 0

I I
. . .

...
...

...
. . .

. . .
...

I I · · · I 0
I I · · · I I

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

θ1

θ2

...
θT−1

θT

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

θ1

θ1 + θ2

...
θ1 + θ2 + · · · + θT−1

θ1 + θ2 + · · · + θT−1 + θT

⎤
⎥⎥⎥⎥⎥⎦

.

The matrices I and 0 in L are the n×n identity and all-zero matrices respectively.
We also need to define zt which is xt padded with zeros in the following way

zt =

[
0 · · · 0︸ ︷︷ ︸ x′

t 0 · · · 0︸ ︷︷ ︸
n(t − 1) n(T − t)

]′
,

so that
z′tLθ = x′

t(θ1 + θ2 + . . . + θt).

Let at > 0, t = 1, . . . , T , be arbitrary constants. Consider the prior distribu-
tion P0 in the set R

nT of possible weights θ with the Gaussian density

P0(dθ) =

(
T∏

t=1

at

)n/2 ( η

π

)nT/2

e−η
∑T

t=1 at‖θt‖2
dθ1 . . . dθT

=

(( η

π

)T T∏
t=1

at

)n/2

e−ηθ′Aθdθ,

where, letting I and 0 be as above, we have

A =

⎡
⎢⎢⎢⎢⎣

a1I 0 · · · 0

0 a2I
. . .

...
...

. . . . . . 0
0 · · · 0 aT I

⎤
⎥⎥⎥⎥⎦

.

The loss of θ over the first T trials is

LT (θ) =
T∑

t=1

(yt − z′tLθ)2

= θ′L′
(

T∑
t=1

ztz′t

)
Lθ − 2

(
T∑

t=1

ytz′t

)
Lθ +

T∑
t=1

y2
t .

1 The sum θ1 + . . . + θt corresponds to the predictor ut in [7].
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Therefore, the loss of the APA is (recall that β = e−η)

LT (APA) = logβ

∫

RnT

βLT (θ)P0(dθ)

= logβ

∫

RnT

(( η

π

)T T∏
t=1

at

)n/2

× e−η(θ′L′(∑T
t=1 ztz′

t)Lθ−2(∑T
t=1 ytz′

t)Lθ+
∑T

t=1 y2
t +θ′Aθ)dθ

= logβ

∫

RnT

(( η

π

)T T∏
t=1

at

)n/2

× e−ηθ′(L′∑T
t=1 ztz′

tL+A)θ+2η(∑T
t=1 ytz′

t)Lθ−η
∑T

t=1 y2
t dθ .

Given the generalised prediction gT (ω) which is the APA’s loss with variable
ω ∈ R replacing yT and using substitution function (3), the AA’s prediction is

γT =
1

4Y
logβ

βgT (−Y )

βgT (Y )

=
1

4Y
logβ

∫
RnT e−ηθ′(L′∑T

t=1 ztz′
tL+A)θ+2η(∑T −1

t=1 ytz′
tL−Y z′

T L)θdθ
∫

RnT e−ηθ′(L′∑T
t=1 ztz′

tL+A)θ+2η(∑T−1
t=1 ytz′

tL+Y z′
T L)θdθ

.

Let

Q1(θ) = θ′
(

L′
T∑

t=1

ztz′tL + A

)
θ − 2

(
T−1∑
t=1

ytz′tL − Y z′T L

)
θ , and

Q2(θ) = θ′
(

L′
T∑

t=1

ztz′tL + A

)
θ − 2

(
T−1∑
t=1

ytz′tL + Y z′T L

)
θ .

By Lemma 1

γT =
1

4Y
logβ

e−η min
θ∈RnT Q1(θ)

e−η min
θ∈RnT Q2(θ)

=
1

4Y

(
min

θ∈RnT
Q1(θ) − min

θ∈RnT
Q2(θ)

)
.

Finally, by using Lemma 2 we get

γT =
1

4Y
F

(
L′

T∑
t=1

ztz′tL + A, − 2
T−1∑
t=1

ytz′tL, 2Y z′T L

)

=

(
T−1∑
t=1

ytz′t

)
L

(
L′

T∑
t=1

ztz′tL + A

)−1

L′zT . (4)
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3.2 AARCh: Dual Form

Let us define

Z̃ =

⎡
⎢⎢⎢⎣

z′1
z′2
...

z′T

⎤
⎥⎥⎥⎦ ,

√
A =

⎡
⎢⎢⎢⎢⎣

√
a1I 0 · · · 0

0
√

a2I
. . .

...
...

. . . . . . 0
0 · · · 0

√
aT I

⎤
⎥⎥⎥⎥⎦

, and ỹ =

⎡
⎢⎢⎢⎣

y1

...
yT−1

0

⎤
⎥⎥⎥⎦ .

We can rewrite (4) in matrix notation to get

γT = ỹ′Z̃L
(
L′Z̃

′
Z̃L + A

)−1

L′zT

= ỹ′Z̃L
(√

A
(√

A
−1

L′Z̃
′
Z̃L

√
A

−1
+ I
)√

A
)−1

L′zT

= ỹ′Z̃L
√

A
−1
(√

A
−1

L′Z̃
′
Z̃L

√
A

−1
+ I
)−1 √

A
−1

L′zT .

We can now get a dual formulation of this by using Lemma 3:

γT = ỹ′
(
Z̃LA−1L′Z̃

′
+ I
)−1

Z̃LA−1L′zT . (5)

3.3 KAARCh

Since in (5) signals appear only in dot products, we can use the kernel trick to
introduce nonlinearity. In this case we get Kernel AARCh (KAARCh) that at
time T makes a prediction

γT = ỹ′ (K̄ + I
)−1

k̄,

where K̄ =
((∑min(i,j)

t=1
1
at

)
k(xi,xj)

)
i,j

, for i, j = 1, . . . , T , i.e.

K̄ =

⎡
⎢⎢⎢⎢⎢⎣

1
a1

k(x1,x1) 1
a1

k(x1,x2) · · · 1
a1

k(x1,xT )
1
a1

k(x2,x1)
(

1
a1

+ 1
a2

)
k(x2,x2) · · ·

(
1
a1

+ 1
a2

)
k(x2,xT )

...
...

. . .
...

1
a1

k(xT ,x1)
(

1
a1

+ 1
a2

)
k(xT ,x2) · · ·

(
1
a1

+ . . . + 1
aT

)
k(xT ,xT )

⎤
⎥⎥⎥⎥⎥⎦

,

and k̄ =
((∑i

t=1
1
at

)
k(xi,xT )

)
i
, for i = 1, . . . , T , i.e.

k̄ =

⎡
⎢⎢⎢⎢⎢⎣

1
a1

k(x1,xT )(
1
a1

+ 1
a2

)
k(x2,xT )

...(
1
a1

+ . . . + 1
aT

)
k(xT ,xT )

⎤
⎥⎥⎥⎥⎥⎦

.
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4 Upper Bounds

In this section we use the Aggregating Algorithm’s properties to derive upper
bounds on the cumulative square loss suffered by AARCh and KAARCh, com-
pared to that of any expert in the pool.

4.1 AARCh Loss Upper Bound

Theorem 3. For any point in time T and any at > 0, t = 1, . . . , T ,

LT (AARCh) ≤ inf
θ

(
LT (θ) +

T∑
t=1

at‖θt‖2

)

+ Y 2 ln det

(
√

A
−1

L′
T∑

t=1

ztz′tL
√

A
−1

+ I

)
. (6)

Proof. Given the Aggregating Algorithm’s properties, we know that

LT (AARCh) ≤ logβ

∫

RnT

βLT (θ)P0(dθ)

= logβ

(( η

π

)T T∏
t=1

at

)n/2

×
∫

RnT

e−η(θ′(L′∑T
t=1 ztz′

tL+A)θ−2(∑T
t=1 ytzt)Lθ+

∑T
t=1 y2

t )dθ.

By Lemma 1 this is equal to

inf
θ

(LT (θ) + θ′Aθ) + logβ

⎛
⎜⎜⎝
(( η

π

)T T∏
t=1

at

)n/2

πnT/2

√
det
(
ηL′∑T

t=1 ztz′tL + ηA
)

⎞
⎟⎟⎠

= inf
θ

(
LT (θ) +

T∑
t=1

at‖θt‖2

)
+ logβ

√√√√√
(
ηT
∏T

t=1 at

)n

det
(
ηL′∑T

t=1 ztz′tL + ηA
)

= inf
θ

(
LT (θ) +

T∑
t=1

at‖θt‖2

)
+

1
2

logβ

⎛
⎝

∏T
t=1 an

t

det
(
L′∑T

t=1 ztz′tL + A
)
⎞
⎠

= inf
θ

(
LT (θ) +

T∑
t=1

at‖θt‖2

)

− 1
2

logβ

⎛
⎝det

(√
A
(√

A
−1

L′∑T
t=1 ztz′tL

√
A

−1
+ I
)√

A
)

∏T
t=1 an

t

⎞
⎠

= inf
θ

(
LT (θ) +

T∑
t=1

at‖θt‖2

)
+ Y 2 ln det

(
√

A
−1

L′
T∑

t=1

ztz′tL
√

A
−1

+ I

)
.
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4.2 KAARCh Loss Upper Bound

The following generalises Theorem 3. Note that we cannot repeat the proof for
the linear case directly since it involves the evaluation of an integral over the
space R

nT .

Theorem 4. Let k be a kernel on a space X, let Dt, t = 1 . . . T , be any decision
rules in the RKHS F induced by k and let D = (D1, D2, . . . , DT )′. Then, for
any point in time T and every at > 0, t = 1, . . . , T ,

LT (KAARCh) ≤ LT (D) +
T∑

t=1

at‖Dt‖2 + Y 2 ln det
(
K̄ + I

)
. (7)

Proof. It will be sufficient to prove this for Dt of the form

ft(x) =
l(t)∑
i=1

c
(t)
i k(v(t)

i ,x),

where l(t) are positive integers, c
(t)
i ∈ R, and v(t)

i ,x ∈ X (we use (t) to show that
these parameters can be different for each ft). This is because such finite sums
are dense in the RKHS F . If we take f = (f1, f2, . . . , fT )′, (7) becomes

LT (KAARCh) ≤ LT (f)+
T∑

t=1

at

l(t)∑
i,j=1

c
(t)
i c

(t)
j k(v(t)

i ,v(t)
j )+Y 2 ln det

(
K̄ + I

)
, (8)

where

LT (f) =
T∑

t=1

⎛
⎝yt −

l(t)∑
i=1

c
(t)
i k(v(t)

i ,xt)

⎞
⎠

2

.

In the special case when X = R
n and k(vi,vj) = v′

ivj for every vi,vj ∈ X ,
(8) follows directly from (6). Indeed, a kernel predictor ft reduces to the linear

predictor θt =
∑l(t)

i=1 c
(t)
i v(t)

i and the term
∑l(t)

i,j=1 c
(t)
i c

(t)
j k
(
v(t)

i ,v(t)
j

)
equals the

squared quadratic norm of θt. Finally, by Sylvester’s determinant identity (see
also Lemma 4 for an independent proof of this) we know that

det
(
K̄ + I

)
= det

(
Z̃LA−1L′Z̃

′
+ I
)

= det
(√

A
−1

L′Z̃
′
Z̃L

√
A

−1
+ I
)

.

The general case can be obtained by using finite dimensional approximations.
Recall that inherent in every kernel is a function φ that maps objects to the
RKHS F , which is isomorphic to l2 = {α = (α1, α2, . . . )|

∑∞
i=1 α2

i converges}.
Let us consider the sequence on subspaces R1 ⊆ R2 ⊆ . . . ⊆ F . The set Rs =
{(α1, α2, . . . , αs, 0, 0, . . .)} may be identified with R

s. Let ps : F → Rs be the
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projection operator ps(α) = (α1, α2, . . . , αs, 0, 0, . . . ), φs : X → Rs be φs =
ps(φ), and ks be given by ks(v1,v2) = 〈φs(v1), φs(v2)〉, where v1,v2 ∈ X .

Inequality (8) holds for ks since Rs has a finite dimension. If (8) is violated,
then its counterpart with some large s is violated too and this observation com-
pletes the proof.

5 Discussion

In this section we shall analyse upper bound (7) in order to obtain an equivalent
of Corollary 1. Our goal is to show that KAARCh’s cumulative loss is less or
equal to that of a wide class of experts plus a term of the order o(T ).

Estimating the determinant of a positive definite matrix by the product of
its diagonal elements (see [15, Sect. 2.10, Theorem 7]) and using the inequality
ln(1+x) ≤ x (in our case x is small, and therefore the resulting bound is tight),
we get

Y 2 ln det
(
K̄ + I

)
≤ Y 2

T∑
t=1

ln

(
1 + c2

t∑
i=1

1
ai

)

≤ Y 2c2
T∑

t=1

t∑
i=1

1
ai

= Y 2c2
T∑

t=1

T − t + 1
at

,

where c = supx∈X

√
k(x,x).

It is natural to single out the first decision rule D1 and the corresponding
coefficient a1 from the rest. We may think of it as corresponding to the choice of
the ‘principal’ dependency; let the rest of Dt (t = 2, . . . , T ) be small correction
terms. Let us take equal a2 = . . . = at = a. We get

LT (KAARCh) ≤ LT (D) +
(

a1‖D1‖2 +
Y 2c2T

a1

)

+

(
a

T∑
t=2

‖Dt‖2 +
Y 2c2T (T − 1)

2a

)
. (9)

If we bound the norm of D1 by d1 and assume that T is known in advance, a1

may be chosen as in Corollary 1. The second term in the right hand side of (9)
can thus be bounded by O

(√
T
)
. If we assume that

∑T
t=2 ‖Dt‖2 ≤ s(T ), then

the estimate is minimised by a =
√

Y 2c2T (T − 1)/(2s(T )) and the third term

in the right hand side of (9) can be bounded by O
(
T
√

s(T )
)
. We therefore get

the following corollary:
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Corollary 2. Under the conditions of Theorem 4, let T be known in advance
and c = supx∈X

√
k(x,x). For every every d1 > 0 and every function s(T ), if

‖D1‖ ≤ d1 and
∑T

t=2 ‖Dt‖2 ≤ s(T ), then at, for t = 1, . . . , T , can be chosen so
that

LT (KAARCh) ≤ LT (D) + 2Y cd1

√
T + 2Y c

√
s(T )T (T − 1)/2.

If s(T ) = o(1), then LT (KAARCh) ≤ LT (D) + o(T ).

The estimate s(T ) = o(1) can be achieved in two natural ways. First, one can
assume that each ‖Dt‖, for t = 2, . . . , T , is small.

Corollary 3. Under the conditions of Theorem 4, let T be known in advance.
For every positive d, d1, and ε, if ‖D1‖ ≤ d1 and, for t = 2, . . . , T ,

‖Dt‖ ≤ d

T 0.5+ε
,

then

LT (KAARCh) ≤ LT (D) + O
(
T max(0.5,(1−ε))

)

= LT (D) + o(T ).

Secondly, one may assume that there are only a few nonzero Dt, for t = 2, . . . , T .
In this case, the nonzero Dt can have greater flexibility.
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Appendix

Lemma 1. Let Q(θ) = θ′Aθ + b′θ + c, where θ,b ∈ R
n, c is a scalar and A is

a symmetric positive definite n × n matrix. Then

∫

Rn

e−Q(θ)dθ = e−Q0
πn/2

√
detA

,

where Q0 = minθ∈Rn Q(θ).

Proof. Let θ0 ∈ arg min Q. Take ξ = θ − θ0 and Q̃(ξ) = Q(ξ + θ0). It is easy
to see that the quadratic part of Q̃ is ξ′Aξ. Since 0 ∈ arg min Q̃, the form has
no linear term. Indeed, in the vicinity of 0 the linear term dominates over the
quadratic term; if Q̃ has a non-zero linear term, it cannot have a minimum at 0.
Since Q0 = minξ∈Rn Q̃(ξ), we can conclude that the constant term in Q̃ is Q0.
Thus Q̃(ξ) = ξ′Aξ + Q0.

It remains to show that
∫

Rn e−ξ′Aξdξ = πn/2/
√

detA. This can be proved by
considering a basis where A diagonalises (or see [15, Sect. 2.7, Theorem 3]).

Lemma 2. Let

F (A,b,x) = min
θ∈Rn

(θ′Aθ + b′θ + x′θ) − min
θ∈Rn

(θ′Aθ + b′θ − x′θ) ,

where b,x ∈ R
n and A is a symmetric positive definite n × n matrix. Then

F (A,b,x) = −b′A−1x.

Proof. It can be shown by differentiation that the first minimum is achieved at
θ1 = − 1

2A
−1(b + x) and the second minimum at θ2 = − 1

2A
−1(b − x). The

substitution proves the lemma.
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Lemma 3. Given a matrix A, a scalar a and I identity matrices of the appro-
priate size,

(AA′ + aI)−1A = A(A′A + aI)−1 .

Proof.

(AA′ + aI)−1A = (AA′ + aI)−1A(A′A + aI)(A′A + aI)−1

= (AA′ + aI)−1(AA′A + aA)(A′A + aI)−1

= (AA′ + aI)−1(AA′ + aI)A(A′A + aI)−1

= A(A′A + aI)−1

Lemma 4. For every matrix M the equality det(I + M′M) = det(I + MM′)
holds (where I are identity matrices of the correct size).

Proof. Suppose that M is an n × m matrix. Thus (I + MM′) and (I + M′M)
are n × n and m × m matrices respectively. Without loss of generality, we may
assume that n ≥ m (otherwise we swap M and M′). Let the columns of M be m
vectors x1, . . . ,xm ∈ R

n.
We have MM′ =

∑n
i=1 xix′

i. Let us see how the operator MM′ acts on a
vector x ∈ R

n. By associativity, xix′
ix = (x′

ix)xi, where x′
ix is a scalar. There-

fore, if U is the span of x1,x2, . . . ,xm, then MM′(Rn) ⊆ U . In a similar way,
it follows that (I + MM′)(U) ⊆ U . On the other hand, if x is orthogonal to xi,
then xix′

ix = (x′
ix)xi = 0. Hence MM′(U⊥) = 0, where U⊥ is the orthog-

onal complement to U with respect to R
n. Consequently, (I + MM′)|U⊥ = I

(by B|V we denote the restriction of an operator B to a subspace V ). There-
fore (I + MM′)(U⊥) ⊆ U⊥.

One can see that both U and U⊥ are invariant subspaces of (I+MM′). If we
choose bases in U and in U⊥ and then concatenate them, we get a basis of R

n.
In this basis the matrix of (I + MM′) has the form

[
A 0
0 I

]
,

where A is the matrix of (I + MM′)|U . It remains to evaluate det(A).
First let us consider the case of linearly independent x1,x2, . . . ,xm. They

form a basis of U and we may use it to calculate the determinant of the operator
(I + MM′)|U . However,

(I + MM′)xi = xi +
m∑

j=1

(x′
jxi)xj

and thus the matrix of the operator (I + MM′)|U in the basis x1,x2, . . . ,xm is
(I + M′M).

The case of linearly dependent x1,x2, . . . ,xm follows by continuity. Indeed,
m vectors in an n-dimensional space with n ≥ m may be approximated by m in-
dependent vectors to any degree of precision and the determinant is a continuous
function of the elements of a matrix.
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Abstract. Assume we are given a sample of points from some under-
lying distribution which contains several distinct clusters. Our goal is
to construct a neighborhood graph on the sample points such that clus-
ters are “identified”: that is, the subgraph induced by points from the
same cluster is connected, while subgraphs corresponding to different
clusters are not connected to each other. We derive bounds on the prob-
ability that cluster identification is successful, and use them to predict
“optimal” values of k for the mutual and symmetric k-nearest-neighbor
graphs. We point out different properties of the mutual and symmetric
nearest-neighbor graphs related to the cluster identification problem.

1 Introduction

In many areas of machine learning, neighborhood graphs are used to model lo-
cal relationships between data points. Applications include spectral clustering,
dimensionality reduction, semi-supervised learning, data denoising, and many
others. However, the most basic question about such graph based learning al-
gorithms is still largely unsolved: which neighborhood graph to use for which
application and how to choose its parameters. In this article, we want to make
a first step towards such results in a simple setting we call “cluster identifica-
tion”. Consider a probability distribution whose support consists of several high
density regions (clusters) which are separated by a positive distance from each
other. Given a finite sample, our goal is to construct a neighborhood graph on
the sample such that each cluster is “identified”, that is each high density region
is represented by a unique connected component in the graph. In this paper we
mainly study and compare mutual and symmetric k-nearest-neighbor graphs.
For different choices of k we prove bounds on the probability that clusters can
be identified. In toy experiments, the behavior of the bounds as a function of
k corresponds roughly to the empirical frequencies. Moreover, we compare the
different properties of the mutual and the symmetric nearest-neighbor graphs.
Both graphs have advantages in different situations: if one is only interested in
identifying the “most significant” cluster (while some clusters might still not be
correctly identified), then the mutual kNN graph should be chosen. However, if
one wants to identify many clusters simultaneously the bounds show no differ-
ence between the two graphs. Empirical evaluations show that in this case the
symmetric kNN graph is to be preferred due to its better connectivity properties.
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There is a huge amount of literature with very interesting results on
connectivity properties of random graphs, both for Erdős-Rényi random graphs
(Bollobas, 2001) and for geometric random graphs (Penrose, 2003). Applications
include percolation theory (Bollobas and Riordan, 2006), modeling ad-hoc net-
works (e.g., Santi and Blough, 2003, Bettstetter, 2002, Kunniyur and Venkatesh,
2006), and clustering (e.g., Brito et al., 1997 and Biau et al., 2007). In all those
cases the literature mainly deals with different kinds of asymptotic results in
the limit for n → ∞. However, what we would need in machine learning are
finite sample results on geometric random graphs which can take into account
the properties of the underlying data distribution, and which ideally show the
right behavior even for small sample sizes and high dimensions. In this paper we
merely scratch the surface of this long-term goal.

Let us briefly introduce some basic definitions and notation for the rest of the
paper. We always assume that we are given n data points X1, ..., Xn which have
been drawn i.i.d. from some underlying density on R

d. Those data points are used
as vertices in a graph. By kNN(Xj) we denote the set of the k nearest neighbors of
Xj . The different neighborhood graphs, which are examples of geometric random
graphs, are defined as

– the ε-neighborhood graph Geps(n, ε): Xi and Xj connected if ‖Xi−Xj‖ ≤ ε,
– the symmetric k-nearest-neighbor graph Gsym(n, k):

Xi and Xj connected if Xi ∈ kNN(Xj) or Xj ∈ kNN(Xi),
– the mutual k-nearest-neighbor graph Gmut(n, k):

Xi and Xj connected if Xi ∈ kNN(Xj) and Xj ∈ kNN(Xi).

2 Between- and Within-Cluster Connectivity of Mutual
and Symmetric kNN-Graphs

This section deals with the connectivity properties of kNN graphs. The proof
ideas are basically the same as in Brito et al. (1997). However, since we are more
interested in the finite sample case we have tried to make the bounds as tight
as possible. We also make all constants explicit, which sometimes results in long
expressions, but allows to study the influence of all parameters. In Brito et al.
(1997) the main emphasis was put on a rate of k which is sufficient for connected-
ness of the mutual kNN graphs, resulting in a choice of k that is proportional to
log (n). However, if one is interested in identifying the clusters as the connected
components of the mutual kNN graph one should optimize the trade-off between
having high probability of being connected within clusters and high probability
of having no edges between the different clusters. Most importantly, integrating
the properties of the mutual and symmetric kNN graph we derive bounds which
work for each cluster individually. This allows us later on to compare both graphs
for different scenarios: identification of all clusters vs. the “most significant” one.

We assume that our clusters C(1), . . . , C(m) are m disjoint, compact and con-
nected subsets of R

d. The distance of C(i) to its closest neighboring cluster
C(j) is denoted by u(i), where the distance between sets S1, S2 is measured by
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d(S1, S2) = inf{‖x − y‖ | x ∈ S1, y ∈ S2}. Let p(i) be a probability density with
respect to the Lebesgue measure in R

d whose support is C(i). The sample points
{Xi}n

i=1 are drawn i.i.d. from the probability density p(x) =
∑m

j=1 β(j) p(j)(x),
where β(j) > 0 for all j and

∑m
j=1 β(j) = 1. We denote by n(i) the number

of points in cluster C(i) (i = 1, . . . , m). The kNN radius of a point Xi is the
maximum distance to a point in kNN(Xi). R

(i)
min and R

(i)
max denote the minimal

and the maximal kNN radius of the sample points in cluster C(i). Bin(n, p) de-
notes the binomial distribution with parameters n and p. Since we often need
tail bounds for the binomial distribution, we set D (k; n, p) = P (U ≤ k) and
E (k; n, p) = P (U ≥ k) for a Bin(n, p)-distributed random variable U . Finally,
we denote the ball of radius r around x by B(x, r), and the volume of the d-
dimensional unit ball by ηd.

In the following we will need upper and lower bounds for the probability mass
of balls around points in clusters. These are given by continuous and increas-
ing functions g

(i)
min, g̃

(i)
min, g

(i)
max : [0, ∞) → R with g

(i)
min(t) ≤ infx∈C(i) P (B(x, t)),

g̃
(i)
min(t) ≤ infB(x,t)⊆C(i) P (B(x, t)) and g

(i)
max(t) ≥ supx∈C(i) P (B(x, t)).

2.1 Within-Cluster Connectivity of Mutual kNN Graphs

The analysis of connectedness is based on the following observation: If for an
arbitrary z > 0 the minimal kNN radius is larger than z, then all points in
a distance of z or less are connected in the kNN graph. If we can now find a
covering of a cluster by balls of radius z/4 and every ball contains a sample point,
then the distance between sample points in neighboring balls is less than z. Thus
the kNN graph is connected. The following proposition uses this observation to
derive a bound for the probability that a cluster is disconnected under some
technical conditions on the boundary of the cluster. These technical conditions
ensure that we do not have to cover the whole cluster but we can ignore a
boundary strip (the collar set in the proposition). This helps in finding a better
bound for the probability mass of balls of the covering.

Proposition 1 (Within-cluster connectedness of Gmut(n, k)). Assume
that the boundary ∂C(i) of cluster C(i) is a smooth (d − 1)-dimensional sub-
manifold in R

d with maximal curvature radius κ(i) > 0. For ε ≤ κ(i), we define
the collar set C(i)(ε) = {x ∈ C(i)

∣∣ d(x, ∂C(i)) ≤ ε} and the maximal covering
radius ε

(i)
max = max

ε≤κ(i)
{ε

∣∣ C(i)\C(i)(ε) connected }. Let z ∈
(
0, 4 ε

(i)
max

)
. Given a

covering of C(i)\C(i)( z
4 ) with balls of radius z/4, let F (i)

z denote the event that
there exists a ball in the covering that does not contain a sample point. Then

P
(
Cluster C(i) disconnected in Gmut(n, k)

)
≤ P

(
R

(i)
min ≤ z

)
+ P

(
F (i)

z

)
. (1)

Proof. The proof is based on the fact that the event {R
(i)
min > z} ∩ F (i)

z implies
connectedness of C(i). Namely, sample points lying in neighboring sets of the
covering of C(i)\C(i)( z

4 ) have distance less than z. Therefore they are connected
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by an edge in the mutual kNN graph. Moreover, all sample points lying in the
collar set C(i)( z

4 ) are connected to some sample point in C(i)\C(i)( z
4 ). �

The proof concept of Propositions 1 and 3 does not require smoothness of the
boundary of the cluster. However, the more general case requires a different
construction of the covering which leads to even more technical assumptions
and worse constants.

Proposition 2 (Minimal kNN radius). For all z > 0

P
(
R

(i)
min ≤ z

)
≤ n β(i) E

(
k; n − 1, g(i)

max(z)
)
.

Proof. Assume without loss of generality that X1 ∈ C(i) (after a suitable per-
mutation). Define Ms = |{j 	= s |Xj ∈ B (Xs, z)}| for 1 ≤ s ≤ n. Then

P
(
R

(i)
min ≤ z | n(i) = l

)
≤ l P

(
M1 ≥ k

)
.

Since n(i) ∼ Bin
(
n, β(i)

)
, we have

P
(
R

(i)
min ≤ z

)
≤

n∑
l=0

l P
(
M1 ≥ k

)
P(n(i) = l) = nβ(i)P

(
M1 ≥ k

)
.

Since M1 ∼ Bin (n − 1, P (B(X1, z))), with P (B(X1, z)) ≤ g
(i)
max (z) we obtain

P (M1 ≥ k) ≤ E
(
k; n − 1, g

(i)
max (z)

)
. �

Proposition 3 (Covering with balls). Under the conditions of Proposition 1
there exists a covering of C(i)\C(i)( z

4 ) with N balls of radius z/4, such that
N ≤

(
8d vol

(
C(i)

))
/

(
zdηd

)
and

P
(
F (i)

z

)
≤ N

(
1 − g̃

(i)
min

(z

4

))n

.

Proof. A standard construction using a z/4-packing provides us with the cov-
ering. Due to the conditions of Proposition 1 we know that balls of radius z/8
around the packing centers are disjoint and subsets of C(i). Thus the sum of the
volumes of these balls is bounded by the volume of the cluster and we obtain
N (z/8)d ηd ≤ vol

(
C(i)

)
. Using a union bound over the covering with a proba-

bility of
(
1 − g̃

(i)
min

(
z
4

) )n for one ball being empty we obtain the bound. �
The following proposition gives an easy extension of the result of Proposition 1
to the symmetric k-nearest-neighbor graph:

Proposition 4 (Within-cluster connectedness of Gsym(n, k)). We have

P
(
Cluster C(i) conn. in Gsym(n, k)

)
≥ P

(
Cluster C(i) conn. in Gmut(n, k)

)
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Proof. The edge set of Gmut(n, k) is a subset of the edges of Gsym(n, k). Hence
connectedness of Gmut(n, k) implies connectedness of Gsym(n, k). �
Note that this bound does not take into account the better connectivity proper-
ties of the symmetric kNN graph. Therefore one can expect that this bound is
quite loose. We think that proving tight bounds for the within-cluster connec-
tivity of the symmetric kNN graph requires a completely new proof concept. See
Section 3 for more discussion of this point.

2.2 Between-Cluster Connectivity of kNN Graphs

In this section we state bounds for the probability of edges between different
clusters. The existence of edges between clusters is closely related to the event
that the maximal k-nearest-neighbor radius is greater than the distance to the
next cluster. Therefore we first give a bound for the probability of this event
in Proposition 5. Then we apply this result to the mutual k-nearest-neighbor
graph (in Proposition 6) and to the symmetric k-nearest-neighbor graph (in
Proposition 7). It will be evident that the main difference between mutual kNN
graphs and symmetric kNN graphs lies in the between-cluster connectivity.

Proposition 5 (Maximal nearest-neighbor radius). We have

P
(
R(i)

max ≥ u(i)
)

≤ nβ(i)D
(
k − 1; n − 1, g

(i)
min

(
u(i)

))
.

The proof is omitted here because it is very similar to the proof of Proposition 2.
It can be found in Maier et al. (2007). The previous proposition can be used to
compare Gmut(n, k) and Gsym(n, k) with respect to cluster isolation. We say
that a cluster C(i) is isolated in the graph if there are no edges between sample
points lying in C(i) and any other cluster. In Gmut(n, k) isolation of a cluster
only depends on the properties of the cluster itself:

Proposition 6 (Cluster isolation in Gmut(n, k)). We have

P
(
Cluster C(i) isolated in Gmut(n, k)

)
≥ 1 − P

(
R(i)

max ≥ u(i)
)

≥ 1 − n β(i)D
(
k − 1; n − 1, g

(i)
min

(
u(i)

))
.

Proof. Since the neighborhood has to be mutual, we have no connections between
C(i) and another cluster if the maximal kNN radius fulfills R

(i)
max < u(i). �

The next theorem shows that the probability for connections between clusters
is significantly higher in the symmetric kNN graph.

Proposition 7 (Cluster isolation in Gsym(n, k)). We have

P
(
C(i) isolated in Gsym(n, k)

)
≥ 1 −

m∑
j=1

P
(
R(j)

max ≥ u(j)
)

≥ 1 − n

m∑
j=1

β(j)D
(
k − 1; n − 1, g

(j)
min

(
u(j)

))
.
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Proof. Let uij be the distance of C(i) and C(j). The event that C(i) is connected
to any other cluster in Gsym(n, k) is contained in the union {R

(i)
max ≥ u(i)} ∪

{∪j �=i{R
(j)
max ≥ uij}}. Using a union bound we have

P
(
C(i) not isolated in Gsym(n, k)

)
≤ P

(
R(i)

max ≥ u(i)
)

+
∑
j �=i

P
(
R(j)

max ≥ uij
)
.

Using first u(j) ≤ uij and then Proposition 6 we obtain the two inequalities. �
Note that the upper bound on the probability that C(i) is isolated is the same for
all clusters in the symmetric kNN graph. The upper bound is loose in the sense
that it does not respect specific geometric configurations of the clusters where
the bound could be smaller. However, it is tight in the sense that the probability
that cluster C(i) is isolated in Gsym(n, k) always depends on the worst cluster.
This is the main difference to the mutual kNN graph, where the properties of
cluster C(i) are independent of the other clusters.

3 The Isolated Point Heuristic

In the last sections we proved bounds for the probabilities that individual clusters
in the neighborhood graph are connected, and different clusters in the neighbor-
hood graph are disconnected. The bound on the disconnectedness of different
clusters is rather tight, while the bound for the within-cluster connectedness of
a cluster is tight if n is large, but has room for improvement if n is small. The
reason is that the techniques we used to prove the connectedness bound are not
well-adapted to a small sample size: we cover each cluster by small balls and re-
quire that each ball contains at least one sample point (event F (i)

z in Section 2).
Connectedness of Gmut then follows by construction. However, for small n this
is suboptimal, because the neighborhood graph can be connected even though
it does not yet “cover” the whole data space. Here it would be of advantage to
look at connectivity properties more directly. However, this is not a simple task.

The heuristic we propose makes use of the following fact from the theory of
random graph models: in both Erdős-Rényi random graphs and random geomet-
ric graphs, for large n the parameter for which the graph stops having isolated
vertices coincides with the parameter for which the graph is connected (e.g.,
Bollobas, 2001, p. 161 and Theorem 7.3; Penrose, 2003, p.281 and Theorem
13.17). The isolated point heuristic now consists in replacing the loose bound on
the within-cluster connectivity from Section 2 by a bound on the probability of
the existence of isolated vertices in the graph, that is we use the heuristic

P(C(i) connected) ≈ P(no isolated points in C(i)).

This procedure is consistent for n → ∞ as proved by the theorems cited above,
but, of course, it is only a heuristic for small n.

Proposition 8 (Probability of isolated points in Geps). We have

P
(
ex. isol. points from C(i) in Geps(n, ε)

)
≤ β(i) n (1 − g

(i)
min(ε))

n−1.
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Proof. Suppose there are l points in cluster C(i). Then a point Xi from C(i)

is isolated if min1≤j≤n,j �=i ‖Xi − Xj‖ > ε. This event has probability less than
(1 − g

(i)
min(ε))

n−1. Thus a union bound yields

P
(
ex. isol. points from C(i) in Geps(n, ε) | n(i) = l

)
≤ l (1 − g

(i)
min(ε))

n−1,

and we sum over the Bin(n, β(i))-distributed random variable n(i). �
For the mutual nearest-neighbor graph, bounding the probability of the existence
of isolated points is more demanding than for the ε-graph, as the existence of an
edge between two points depends not only on the distance of the points, but also
on the location of all other points. We circumvent this problem by transferring
the question of the existence of isolated points in Gmut(n, k) to the problem of
the existence of isolated vertices of a particular ε-graph. Namely

{ex. isolated points in Gmut(n, k) } =⇒ {ex. isolated points in Geps (n, Rmin) } .

Proposition 9 (Probability of isolated points in Gmut). Let v =
sup

{
d(x, y)

∣∣x, y ∈ ∪m
i=1C

(i)
}

and b : [0, v] → R be a continuous function such
that P

(
R

(i)
min ≤ t

)
≤ b(t). Then,

P
(
ex. isol. points from C(i) in Gmut(n, k)

)
≤β(i) n

∫ v

0

(
1 − g

(i)
min(t)

)n−1

db (t) .

Proof. Let Amut =
{
ex. isolated points from C(i) in Gmut(n, k)

}
and

Aeps(t) =
{
ex. isolated points from C(i) in Geps(n, t)

)}
. Proposition 8 implies

P
(
Amut | R(i)

min = t
)

≤ P
(
Aeps (t)

)
≤ β(i) n

(
1 − g

(i)
min(t)

)n−1. c(t) = β(i) n
(
1 −

g
(i)
min(t)

)n−1 is a decreasing function that bounds P
(
Amut | R(i)

min = t
)
. Straight-

forward calculations and standard facts about the Riemann-Stieltjes integral
conclude the proof. For details see Maier et al. (2007). �
Note that in the symmetric nearest-neighbor graph isolated points do not exist
by definition. Hence, the isolated points heuristic cannot be applied in that case.

4 Asymptotic Analysis

In this section we study the asymptotic behavior of our bounds under some
additional assumptions on the probability densities and geometry of the clus-
ters. Throughout this section we assume that the assumptions of Proposi-
tion 1 hold and that the densities p(i) satisfy 0 < p

(i)
min ≤ p(i)(x) ≤ p

(i)
max

for all x ∈ C(i). We define the overlap function O(i)(r) by O(i)(r) =
inf

x∈C(i)

(
vol

(
B(x, r) ∩ C(i)

)
/ vol (B(x, r))

)
. With these assumptions we can es-

tablish a relation between the volume of a ball and its probability mass,

g
(i)
min(t) = β(i)O

(i)(t)p(i)
minηdt

d and g̃
(i)
min(t) = β(i)p

(i)
mint

dηd,
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g(i)
max(t) =

{
tdηdβ(i)p

(i)
max if t ≤ u(i)

(
u(i)

)d
ηd

(
β(i)p

(i)
max − pmax

)
+ tdηdpmax if t > u(i),

where pmax = max1≤i≤m β(i)p
(i)
max.

In Proposition 1 we have given a bound on the probability of disconnectedness
of a cluster which has two free parameters, k and the radius z. Clearly the optimal
value of z depends on k. In the following proposition we plug in the expressions
for g̃

(i)
min(t) and g

(i)
max(t) above and choose a reasonable value of z for every k, in

order to find a range of k for which the probability of disconnectedness of the
cluster asymptotically approaches zero exponentially fast.

Proposition 10 (Choice of k for asymptotic connectivity). Define
1/D(i) = 1 + 4d(e2 − 1)p(i)

max/p
(i)
min and

k′ =
1

D(i)
(n − 1)β(i)p

(i)
minηd min

{(
ε(i)
max

)d

,

(
u(i)

4

)d
}

.

Then if n ≥ e/
(
2d β(i) vol(C(i))p(i)

min

)
there exists 0 < γ < 1 such that

P
(
C(i) conn. in Gsym(n, k)

)
≥ P

(
C(i) conn. in Gmut(n, k)

)
≥ 1 − 2 e−γ D(i) k,

for all k ∈ {1, . . . , n − 1} with

k′ ≥ k ≥ 1
D(i)

log(2d vol(C(i))p(i)
minβ(i) n(1 − γ))

(1 − γ)
. (2)

Proof. We give an outline of the proof for the mutual k-nearest-neighbor graph.
For details see Maier et al. (2007). The statement for the symmetric k-nearest-
neighbor graph then follows with Proposition 4. In the following we set zd =

8d vol
(
C(i)

)
αθ/

(
β(i)ηd

)
for a θ ∈ (0, θmax) with θmax =

(
8d vol

(
C(i)

)
p
(i)
max

)−1

and α = k/(n−1). For θ in this interval we can apply a tail bound for the binomial
distribution from Hoeffding (1963). Let z denote the radius that corresponds to
θ and k. With the tail bound for the binomial and standard inequalities for the
logarithm we can show that log

(
P

(
R

(i)
min ≤ z

))
≤ g (θ), where

g (θ) = log
(

β(i)

θα

)
+ nα

(
2 + log 8d vol

(
C(i)

)
p(i)
maxθ − 8d vol

(
C(i)

)
p(i)
maxθ

)

and log (P (F)) ≤ h (θ), where

h(θ) = log
(

β(i)

θα

)
− 2dnαp

(i)
min vol(C(i))θ.

With straightforward calculations and standard inequalities for the exponential
function one can show that for θ∗ = D(i)/

(
2d vol(C(i))p(i)

min

)
we have g(θ∗) ≤
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h(θ∗). Straightforward calculations show that under the conditions γ ∈ (0, 1),
n ≥ e/

(
2d vol(C(i))(1 − γ)β(i)p

(i)
min

)
and that k is bounded from below as in

Equation (2), we have h (θ∗) ≤ −γkD(i). For all n ≥ e/
(
2d β(i) vol(C(i))p(i)

min

)

we can find γ ∈ (0, 1) such that n ≥ e/
(
2d vol(C(i))(1 − γ)β(i)p

(i)
min

)
. Using

g(θ∗) ≤ h(θ∗) ≤ −γkD(i) we have shown that P
(
R

(i)
min ≤ z

)
≤ exp

(
−γkD(i)

)

and P (F) ≤ exp
(
−γkD(i)

)
. Reformulating the conditions z/4 ≤ ε

(i)
max and z ≤

u(i) in terms of θ∗ gives the condition k ≤ k′. �
The result of the proposition is basically that if we choose k ≥ c1+c2 log(n) with
two constants c1, c2 that depend on the geometry of the cluster and the respective
density, then the probability that the cluster is disconnected approaches zero
exponentially in k.

Note that, due to the constraints on the covering radius, we have to introduce
an upper bound k′ on k, which depends linearly on n. However, the probability
of connectedness is monotonically increasing in k , since the k-nearest-neighbor
graph contains all the edges of the (k−1)-nearest-neighbor graph. Thus the value
of the within-connectedness bound for k = k′ is a lower bound for all k > k′ as
well. Since the lower bound on k grows with log(n) and the upper bound grows
with n, there exists a feasible region for k if n is large enough.

Proposition 11 (Maximal kNN radius asymptotically). Let p
(i)
2 =

β(i)O
(i)

(
u(i)

)
p
(i)
min ηd (u(i))d and k ≤ (n − 1)p(i)

2 + 1. Then

P
(
R(i)

max ≥ u(i)
)

≤ nβ(i)e
−(n−1)

((
p
(i)
2

)2
e−p

(i)
2 +p

(i)
2 − k−1

n−1

)

.

Proof. Using a standard tail bound for the binomial distribution (see Hoeffding,
1963) we obtain from Proposition 5 for (k − 1) ≤ (n − 1)p(i)

2

P
(
R(i)

max ≥ u(i)
)

≤ nβ(i)e
−(n−1)

(
k−1
n−1 log (k−1)

(n−1)p(i)
2

+(1− k−1
n−1 ) log 1−(k−1)/(n−1)

1−p
(i)
2

)

.

Using log(1 + x) ≥ x/ (1 + x) and that −w2e−w is the minimum of x log(x/w)
(attained at x = we−w) we obtain the result by straightforward calculations. �

4.1 Identification of Clusters as the Connected Component of a
Mutual and Symmetric kNN Graph

We say that a cluster C(i) is identified if it is an isolated connected compo-
nent in the kNN graph. This requires the cluster C(i) to be connected, which
intuitively happens for large k. Within-cluster connectedness was considered in
Proposition 10. The second condition for the identification of a cluster C(i) is
that there are no edges between C(i) and other clusters. This event was consid-
ered in Proposition 6 and is true if k is small enough. The following theorems
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consider the tradeoff for the choice of k for the identification of one and of all
clusters in both kNN graph types and derive the optimal choice for k. We say
that k is tradeoff-optimal if our bounds for within-cluster connectedness and
between-cluster disconnectedness are equal.

Theorem 12 (Choice of k for the identification of one cluster in
Gmut(n, k)). Define p

(i)
2 as in Proposition 11 and let n and γ be as in Proposi-

tion 10. The tradeoff-optimal choice of k in Gmut(n, k) is given by

k − 1 = (n − 1) p
(i)
2

1 − p
(i)
2 e−p

(i)
2

1 + γD(i)
−

log
(

1
2nβ(i)

)

1 + γD(i)
,

if this choice of k fulfills the conditions in Proposition 10 and k < (n−1)p(i)
2 +1.

For this choice of k we have

P
(
C(i) ident. in Gmut(n, k)

)
≥ 1 − 4e

−(n−1) γD(i)

1+γD(i)

[
p
(i)
2 (1−p

(i)
2 e−p

(i)
2 )− log( 1

2 nβ(i))

(n−1)

]

Proof. We equate the bounds for within-cluster connectedness of Proposition 10
and the bound for between-cluster edges of Proposition 6 and solve for k. �
The result of the previous theorem is that the tradeoff-optimal choice of k has
the form k = c3n − c4 log(n) + c5 with constants c3, c4 ≥ 0 and c5 ∈ R, which
depend on the geometry of the cluster and the respective density. Evidently,
if n becomes large enough, then k chosen according to this rule fulfills all the
requirements in Proposition 10 and Theorem 12.

Theorem 12 allows us to define the “most significant” cluster. Intuitively a
cluster is more significant the higher its density and the larger its distance to
other clusters. Formally the “most significant” cluster is the one with the best
rate for identification, that is the maximal rate of the bound:

max
1≤i≤m

γD(i)

1 + γD(i)

[
p
(i)
2 (1 − p

(i)
2 e−p

(i)
2 ) −

log(1
2nβ(i))
n

]

The term in front of the bracket is increasing in D(i) and thus is larger, the
closer p

(i)
max and p

(i)
min are, that is for a fairly homogeneous density. The second

term in the brackets approaches zero rather quickly in n. It is straightforward
to show that the first term in the bracket is increasing in p

(i)
2 . Thus a cluster

becomes more significant, the higher the probability mass in balls of radius u(i),
that is, the higher β(i), p

(i)
min, u(i) and the higher the value of the overlap function

O(i)(u(i)).
We would like to emphasize that it is a unique feature of the mutual kNN

graph that one can minimize the bound independently of the other clusters.
This is not the case for the symmetric kNN graph. In particular, in the
case of many clusters, a few of which have high probability, the differences
in the rates can be huge. If the goal is to identify not all clusters but only the most
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important ones, that means the ones which can be detected most easily, then the
mutual kNN graph has much better convergence properties than the symmetric
kNN graph. We illustrate this with the following theorem for the symmetric kNN
graph.

Theorem 13 (Choice of k for the identification of one cluster in
Gsym(n, k)). Define ρ2 = min1≤i≤m p

(i)
2 and let n and γ be as in Proposition 10.

The tradeoff-optimal choice of k in Gsym(n, k) is given by

k − 1 = (n − 1) ρ2
1 − ρ2e

−ρ2

1 + γD(i)
−

log
(

n
2

)

1 + γD(i)
,

if this choice of k fulfills the conditions in Proposition 10 and k < (n − 1)ρ2 + 1.
For this choice of k

P
(
C(i) identified in Gsym(n, k)

)
≥ 1 − 4e

−(n−1) γD(i)

1+γD(i)

[
ρ2(1−ρ2e−ρ2 )− log( n

2 )
(n−1)

]
.

Proof. Combining Proposition 7 and Proposition 11 we obtain

P
(
Cluster C(i) not isolated in Gsym(n, k)

)
≤ n

m∑
i=1

β(i)e
−(n−1)(ρ2

2e−ρ2+ρ2− k−1
n−1 ).

Equating this bound with the within-connectedness bound in Proposition 10 we
obtain the result. �
A comparison with the rate of Theorem 12 for the mutual kNN graph shows
that the rate of the symmetric kNN graph depends on the “worst” cluster. This
property would still hold if one found a tighter bound for the connectivity of the
symmetric kNN graph.

Corollary 14 (Choice of k for the identification of all clusters in
Gmut(n, k)). Define pratio = max1≤i≤m

(
p
(i)
max/p

(i)
min

)
and ρ2 = min1≤i≤m p

(i)
2 .

Let 1/D = 1 + 4d(e2 − 1)pratio and n, γ be as in Proposition 10. The tradeoff-
optimal k for the identification of all clusters in Gmut(n, k) is given by

k − 1 = (n − 1)ρ2
1 − ρ2e

−ρ2

1 + γD
−

log
(

n
2m

)
1 + γD

,

if this choice of k fulfills the conditions in Proposition 10 for all clusters C(i),
i = 1, . . . , m and k < (n − 1)ρ2 + 1. For this choice of k we have

P
(
All clusters ident. in Gmut(n, k)

)
≥1 − 4 m e

−(n−1) γD
1+γD

[
ρ2(1−ρ2e−ρ2 )− log( n

2m
)

(n−1)

]
.

Proof. Using a union bound, we obtain from Proposition 10 and Proposition 11

P
( m⋃

i=1

C(i) not isolated
)

≤ n

m∑
i=1

β(i)e
−(n−1)(ρ2

2e−ρ2+ρ2− k−1
n−1 )

P
( m⋃

i=1

Cluster C(i) disconnected in Gmut(n, k)
)

≤ 2m e−γk D
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We obtain the result by equating these two bounds. �
The result for the identification of all clusters in the mutual kNN graph is not
much different from the result for the symmetric kNN graph. Therefore the
difference in the behavior of the two graph types is greatest if one is interested
in identifying the most important clusters only.

5 Simulations

The long-term goal of our work is to find rules which can be used to choose
the parameters k or ε for neighborhood graphs. In this section we want to test
whether the bounds we derived above can be used for this purpose, at least
in principle. We consider a simple setting with a density of the form f(x) =
βf̃(x) + (1 − β)f̃ (x − (u + 2)e1), where β ∈ (0, 1) is the weight of the individual
clusters, f̃ is the uniform density on the unit ball in R

d, e1 = (1, 0, . . . , 0)′, and
u is the distance between the clusters.

First we compare the qualitative behavior of the different bounds to the cor-
responding empirical frequencies. For the empirical setting, we randomly draw
n points from the mixture density above, with different choices of the param-
eters. For all values of k we then evaluate the empirical frequencies Pemp for
within-cluster connectedness, between-cluster disconnectedness, and the exis-
tence of isolated points by repeating the experiment 100 times. As theoretical
counterpart we use the bounds obtained above, which are denoted by Pbound.
To evaluate those bounds, we use the true parameters n, d, β, u, pmin, pmax.
Figure 1 shows the results for n = 5000 points from two unit balls in R

2 with a
distance of u = 0.5 and β = 0.5. We can see that the bound for within-cluster
disconnectedness is loose, but still gets into a non-trivial regime (that is, smaller
than 1) for a reasonable k. On the other hand the bound for the existence of
isolated points indeed upper bounds the within-cluster disconnectedness and is
quite close to the true probability. Hence the isolated point heuristic works well
in this example. Moreover, there is a range of values of k where both the empir-
ical frequencies and the bounds for the probabilities become close to zero. This
is the region of k we are interested in for choosing optimal values of k in order to
identify the clusters correctly. To evaluate whether our bounds can be used for
this purpose we sample points from the density above and build the kNN graph
for these points. For each graph we determine the range of kmin ≤ k ≤ kmax for
which both within-cluster connectedness and between-cluster disconnectedness
are satisfied, and compute k̂min and k̂max as the mean values over 100 repetitions.
To determine “optimal” values for k we use two rules:

kbound := argmin
k

(Pbound (connected within) + Pbound (disconnected between))

kiso := argmin
k

(Pbound (no isolated points) + Pbound (disconnected between)) .
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The following table shows the results for Gmut(n, k).

n kiso kbound k̂min k̂max

500 17 25 7.2 ± 1.2 41.0 ± 6.5
1000 29 46 7.3 ± 1.2 71.7 ± 9.4
5000 97 213 8.5 ± 1.2 309.3 ± 16.9
10000 101 425 8.8 ± 1.1 596.6 ± 21.1

We can see that for all values of n in the experiment, both kiso and kbound lie
well within the interval of the empirical values k̂min and k̂max. So in both cases,
choosing k by the bound or the heuristic leads to a correct value of k in the sense
that for this choice, the clusters are perfectly identified in the corresponding
mutual kNN graph.
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Fig. 1. Bounds and empirical frequencies for Gmut(n, k) for two clusters with β = 0.5
and u = 0.5 (for plotting, we set the bound to 1 if it is larger than 1)

Finally we would like to investigate the difference between Gmut and Gsym.
While the within-cluster connectivity properties are comparable in both graphs,
the main difference lies in the between-cluster connectivity, in particular, if we
only want to identify the densest cluster in an unbalanced setting where clusters
have very different weights. We thus choose the mixture density with weight
parameter β = 0.9, that is we have one very dense and one very sparse cluster.
We now investigate the identification problem for the densest cluster. The results
are shown in Figure 2. We can see that Gsym(n, k) introduces between-cluster
edges for a much lower k than it is the case for Gmut(n, k), which is a large
disadvantage of Gsym in the identification problem. As a consequence, there is
only a very small range of values of k for which the big cluster can be identified.
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Fig. 2. Within- and between-cluster connectivity for Gmut(n, k) and Gsym(n, k) for
two unbalanced clusters with β = 0.9 and u = 0.5. Note that the curves of Pbound for
Gmut(n, k) and Gsym(n, k) lie on top of each other in the top plot. The scale of the
horizontal axis is different from Figure 1.

For Gmut, on the other hand, one can see immediately that there is a huge range
of k for which the cluster is identified with very high probability. This behavior
is predicted correctly by the bounds given above.

6 Conclusions and Further Work

We studied both Gsym and Gmut in terms of within-cluster and between-cluster
connectivity. While the within-cluster connectivity properties are quite similar in
the two graphs, the behavior of the between-cluster connectivity is very different.
In the mutual kNN graph the event that a cluster is isolated is independent of all
the other clusters. This is not so important if one aims to identify all clusters, as
then also in the mutual graph the worst case applies and one gets results similar
to the symmetric graph. However, if the goal is to identify the most significant
clusters only, then this can be achieved much easier with the mutual graph, in
particular if the clusters have very different densities and different weights.

It is well known that the lowest rate to asymptotically achieve within-cluster
connectivity is to choose k ∼ log(n) (e.g., Brito et al., 1997). However, we have
seen that the optimal growth rate of k to achieve cluster identification is not
linear in log(n) but rather of the form k = c3n − c4 log(n) + c5 with constants
c3, c4 ≥ 0 and c5 ∈ R. This difference comes from the fact that we are not
interested in the lowest possible rate for asymptotic connectivity, but in the rate
for which the probability for cluster identification is maximized. To this end we
can “afford” to choose k higher than absolutely necessary and thus improve the
“probability” of within-connectedness. However, as we still have to keep in mind
the between-cluster disconnectedness we cannot choose k “as high as we want”.
The rate now tells us that we can choose k “quite high”, almost linear in n.

There are several aspects about this work which are suboptimal and could be
improved further:
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Firstly, the result on the tradeoff-optimal choice of k relies on the assumption
that the density is zero between the clusters We cannot make this assumption
if the points are disturbed by noise and therefore the optimal choice of k might
be different in that case.

Secondly, the main quantities that enter our bounds are the probability mass
in balls of different radii around points in the cluster and the distance between
clusters. However, it turns out that these quantities are not sufficient to describe
the geometry of the problem: The bounds for the mutual graph do not distinguish
between a disc with a neighboring disc in distance u and a disc that is surrounded
by a ring in distance u. Obviously, the optimal values of k will differ. It would
be possible to include further geometric quantities in the existing proofs, but
we have not succeeded in finding simple descriptive expressions. Furthermore,
it is unclear if one should make too many assumptions on the geometry in a
clustering setting.

Finally, we have indicated in Section 5 how our bounds can be used to choose
the optimal value for k from a sample. However, in our experiments we simply
took most of the parameters like u or β as given. For a real world application,
those parameters would have to be estimated from the sample. Another idea is
to turn the tables: instead of estimating, say, the distance u between the clusters
for the sample and then predicting an optimal value of k one could decide to go
for the most significant clusters and only look for clusters having cluster distance
u and cluster weight β bounded from below. Then we can use the bounds not
for parameter selection, but to construct a test whether the clusters identified
for some value of k are “significant”.
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Abstract. We present a multiple pass streaming algorithm for learning
the density function of a mixture of k uniform distributions over rectan-
gles (cells) in R

d, for any d > 0. Our learning model is: samples drawn
according to the mixture are placed in arbitrary order in a data stream
that may only be accessed sequentially by an algorithm with a very lim-
ited random access memory space. Our algorithm makes 2� + 1 passes,
for any � > 0, and requires memory at most Õ(ε−2/�k2d4 + (2k)d). This
exhibits a strong memory-space tradeoff: a few more passes significantly
lowers its memory requirements, thus trading one of the two most im-
portant resources in streaming computation for the other. Chang and
Kannan [1] first considered this problem for d = 1, 2.

Our learning algorithm is especially appropriate for situations where
massive data sets of samples are available, but practical computation
with such large inputs requires very restricted models of computation.

1 Introduction

The rise of machine learning as an invaluable data analysis paradigm has co-
incided with the proliferation of massive data sets that stress computer sys-
tems in ways that render traditional models of computation inadequate. These
two important considerations necessitate the theoretical study of algorithms for
machine learning and statistical analysis that respect the resource constraints
imposed by massive data set computation.

Of paramount importance is the observation that a large data set will not
fit into the main memory of a computer system, but rather must be stored on
disk or optical drives. For such data, well-designed memory access patterns are
crucial, since access to data requires physical movement within storage devices.
An algorithm will thus incur large time penalties for each random access; for
large data sets, frequent random access is highly undesirable. Random access
can be eliminated and I/O optimized by instead reading the data in a sequential
fashion. The multiple pass streaming model addresses these concerns and
is popular in the theoretical computer science literature. The first few problems
examined in the streaming model include sorting and selection [2] and approx-
imating frequency moments [3]. In this model, data in storage is modeled as a
read-only array that can only be accessed sequentially in passes over the entire
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array. The algorithm may make a few passes over the array and use a small
random-access memory space (usually sublinear in size, since one cannot hope
to store the entire data set in memory) and may take constant time to process
each element of the array. The important resources are therefore passes, space,
and per-element update time.

An important class of data mining and learning problems arises from gener-
ative clustering models. In these models, k clusters are defined by k probability
distributions, F1, . . . , Fk, over some universe Ω, each of which is given a weight
wi ≥ 0 such that

∑k
1 wi = 1. If the Fis are density functions, then the mixture

of these k distributions is defined by the density function F =
∑k

1 wiFi. The
natural interpretation of a point drawn according to the mixture is that distri-
bution Fi is picked with probability wi, and then a point is drawn according to
Fi. We consider the problem of estimating the probability density function of
the mixture F given samples drawn according to the mixture.

In this paper, we will study the problem of learning mixtures of k uniform
distributions over axis-aligned rectangles in R

d, for any d > 0. In this
case, each Fi is a uniform distribution over some cell in d dimensions Ri ={
x ∈ R

d|a1 ≤ x1 ≤ b1, . . . , ad ≤ xd ≤ bd

}
for scalars a1, b1, . . . , ad, bd. The Ris

may intersect in arbitrary ways. Since the Ris are arbitrary, learning the Ris
and wis from a set of samples from the mixture is an ill-defined problem, since
different sets of rectangles and weights, when “mixed”, can form exactly the
same distribution. Therefore, we will learn the density function, rather than the
components, of the mixture. The output of the algorithm will be a function G
that is an estimate of F . G will not be the density function of a mixture of k
uniform distributions, but will nonetheless be an approximation to F .

The motivation behind learning mixtures of uniform distributions over rectan-
gles is that these are among the simplest mixtures, and therefore any theory for
learning mixture models in massive data set paradigms should start with this.
Furthermore, these mixtures are building blocks for more complicated functions;
continuous distribution in R

d can be (heuristically) approximated as a mixture
of sufficiently many uniform distributions over rectangles in R

d.
Our learning and computational model is that samples drawn according to

the mixture F are placed in a datastream X , in arbitrary order.1 Learning
algorithms are required to be multiple-pass streaming algorithms, as described
above. The output of the algorithm will be a function G that is an estimate of
F , with error measured by L1 distance:

∫
Rd |F − G|. An input parameter to the

algorithm will be its probability of failure, δ > 0. The approximation G will in
general be more complex than simply a mixture of uniform distributions.

Chang and Kannan [1] designed pass-efficient algorithms for learning a mix-
ture of k uniform distributions over intervals in R and axis-aligned rectangles in
R

2. In this paper, we use a similar high level approach, but develop new tools
in order to generalize the algorithm to solve problems in arbitrary dimension.

1 Assuming that the data are randomly ordered is not always realistic; for instance if
the data were collected from the census, then perhaps it would be ordered by address
or some other attribute.
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1.1 Our Results

Our main result is a multiple-pass algorithm for learning a mixture of k uniform
distributions in R

d with flexible resource requirements. The number of passes
the algorithm may make is a function of an input parameter � > 0 that is
independent of all other variables. The algorithm exhibits the power of multiple
passes in the streaming learning model: the error drops exponentially with the
number of passes, while the memory required grows very slowly. Viewed another
way, the algorithm exhibits a pass-space tradeoff: if the algorithm is alloted just
a few more passes and its error is held constant, then its memory requirements
drop significantly as a function of ε.

We state our results below. We assume that the algorithm knows a number
w > 0 such that F (x) ≤ w for all x ∈ R

d and that all the probability mass of
the mixture is contained in [0, 1]d.

1. We present a 2� + 1 pass algorithm that, with probability at least 1 − δ,
will learn the mixture’s density function to within L1 distance ε and that
uses memory at most Õ(ε−2/�k2d4 log(1/δ)+(2k)d)2 and per-element update
time O(d2 log(kw/(εδ))). The algorithm requires the data stream to satisfy:
|X | = Ω̃

((
10
8

)d� w2d·k8d+1·d6d+1(2�+d)
ε4d+1 log 1

δ

)
.

2. These guarantees can be transformed to yield a 2� + 1 algorithm that will
learn the mixture with error at most ε�, using space at most:
Õ

(
k2d4

ε2 log(1/δ) + �kd2

ε log(1/δ) + (2k)d
)
.

We note that the sample complexity of the algorithm is high: exponential in
the dimension d. We justify this constraint to some extent with our massive data
set paradigm: we have the luxury of many samples precisely because the data
set is very large! Furthermore, if a researcher has a concrete problem to solve
(and thus d would be fixed), the algorithm would offer him a tradeoff between
the number of passes and the amount of memory required (as a function of ε).
Our researcher can then tune � to adapt the algorithm’s resource requirements
to satisfy the constraints imposed by the chosen system.

We note that in [1], the authors proved that any � pass algorithm for a slightly
more general version of the learning mixtures of uniform distributions in R re-
quires Ω(1/ε1/2�) bits of memory. This result is thus some indication that the
tradeoff that we achieve in this paper has the best order of magnitude (but not
a proof of this statement, since the hardness result is for a stronger problem).

1.2 Overview of Methods

The main action of the algorithm is to learn the locations of the boundaries of
the constituent mixture rectangles in 2� passes. With this knowledge, Learn(d,
k) can partition the domain into cells such that F (x) is close to constant on
each cell; in one more pass over the data stream, it can easily estimate these
constants by counting the number of samples that fall in each of these cells.
2 Õ(·), Ω̃(·), Θ̃(·) denote asymptotic notation with polylogarithmic factors omitted.
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Learn(d, k) requires Subroutine FindBoundary(d, k, m), which is a 2�
pass algorithm for finding the boundary edges of mixture rectangles that lie
in a hyperplane that is perpendicular to the mth dimension; in one pass, this
algorithm draws a sample from the data stream and uses the sample to partition
the domain into a set of roughly 1/ε cells that have probability mass on the order
of ε. It then utilizes one pass subroutine Invariant(d, k, m) to test each of these
cells for boundaries. Suppose Invariant(d, k, m) indicates that a boundary cell
lies somewhere in partition cell P . In order to further localize this boundary cell
(since it could lie anywhere in the relatively big P ), we recurse and partition P
and then test the new subcells, which have probability mass ≈ ε2. Each time
we recurse, we are in essence “zooming in” on cells that we know contain the
boundary in order to get a more accurate estimate of where it lies.

The engine of our algorithm is Invariant(d, k, m), which determines if a
cell C contains a boundary cell contained in a hyperplane that is perpendicular
to the mth dimension. We formulate a statistic that can test this condition;
since |X | is large, the test will be very accurate and will tell us if F is within
L1 distance ε� of what we would expect if C did not contain such a boundary
cell. Algorithmically computing the statistic in one pass using a small amount
of space presents a challenge, and requires the use of a streaming algorithm by
Indyk [4] for the small-space approximation of the L1 lengths of vectors.

The high level overview of the algorithm is similar to the algorithm from [1]
for the d = 1 case. However, generalizing to arbitrary dimensions requires new
ideas and more technical arguments. Our algorithm for the d = 2 case is very
different from [1], and improves upon the old result.

1.3 Related Work

Many algorithms for the unsupervised learning of mixtures of distributions have
appeared in the learning and algorithms theory literature. Algorithms for learn-
ing mixtures of Gaussian distributions in R

d [5,6,7,8] generally estimate the
means and covariance matrices of the constituent distributions from samples
drawn according to the mixture. Algorithms for classification of sample points
to their distribution of origin have been considered [9] for more general distri-
butions. These algorithms are not suitable for massive data sets.

Many one and multiple pass algorithms for database and data mining-inspired
problems appear in the theoretical computer science literature. Among the most
relevant to this study are the algorithms for histogram maintenance [10]. In the
histogram maintenance problem, the algorithm is presented with a datastream
of update pairs of the form “add 2 to aj”, where j ∈ [n].3 During the pass,
the algorithm must maintain a piecewise constant function F (i), with k pieces,
that minimizes

∑
i |F (i) − ai|. Gilbert et al. gave a one pass algorithm for this

problem with approximation ratio 1 + ε. This work gives the best piecewise
constant approximation to arbitrary data (rather than assuming a generative
data model) and is thus similar to our problem of learning the density function

3 [n] denotes the set {1, . . . , n}.
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of a mixture of uniform distributions over intervals in R. A d dimensional variant
of the problem has been studied by Thaper et al. [11] (their running time is also
exponential in d).

Other streaming studies of problems with a statistical flavor include the work
of Guha et al. [12], who consider one pass algorithms for estimating the entropy
of a distribution from samples in a stream.

1.4 Problem Setup

Our algorithm will learn mixtures of distributions over axis-aligned rectangles
in R

d. For completeness, we define rectangles:

Definition 1 (d-cell). For any positive integer d > 0, we define a d-cell to be
a set K ⊂ R

d that satisfies K =
{
x ∈ R

d|a1 ≤ x1 ≤ b1, . . . , ad ≤ xd ≤ bd

}
for

some choice of scalars a1, b1, . . . , ad, bd. We will sometimes write K as a cross
product of d intervals in R: K = (a1, b1) × . . . × (ad, bd).

The volume of the d-cell K is given by vol (K) = |b1−a1|·|b2−a2|·. . .·|bd−ad|.

Throughout this paper, the input will be the data stream X of length |X | = N ,
with samples drawn according to a mixture of k uniform distributions in R

d,
where the mixture rectangles may intersect arbitrarily. The density function
of the mixture will be denoted by F . We assume that the algorithm knows a
number w > 0 such that F (x) ≤ w for all x ∈ R and that all mixture cells are
contained in the cell [0, 1]d. We will call the smallest enclosing cell of the mixture
the bounding box, R ⊆ [0, 1]d.

2 Main Algorithm: Learn(d, k)

We will develop the version of our 2� + 1 pass algorithm with error ε� and
then show how to transform the parameters to get other guarantees. Before
our exposition of the main algorithm, we first introduce the concept of mth
component invariance and an algorithm for testing this condition.

Definition 2 (mth component invariance). A function f is mth component
invariant in K if it satisfies the following condition: if x and y ∈ K satisfy
xi = yi for all i �= m, then f(x) = f(y). In words, mth component invariance is
the condition where f(x) is constant if all components are fixed except the mth
component.

Intuitively, if cell K is invariant in the mth component, then a learning algorithm
does not need to consider the mth component when learning the function F in
K. A key observation is that if F is invariant in all d components in cell K, then
F is, in fact, constant in K.

The learning algorithm relies on the subroutine FindBoundary(d, k, m)
that will learn a decomposition of the bounding box R into a set of cells such that
F is invariant in the mth component of most of the cells. This subroutine is the
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engine for Learn(d, k); its proof of correctness will be presented in Section 3.
To ease the proliferation of complicated expressions, define

SC(d, k, ε, δ, �, w) =
(

10
8

)d�
w2d · k8d+1 · d6d+1(� + d)

ε4�d+�
log 1/δ,

which we will prove is the sample complexity of FindBoundary(d, k, m).
Note that SC(d, k, ε, δ, �, w) is exponential in the dimension d. It also contains a
term with ε�, but this is necessary, since the error of the algorithm is ε�.

Theorem 1. FindBoundary(d, k, m) is a 2� pass algorithm that requires
at most Õ(d3k2

ε2 log(1/δ) + �kd2

ε log(1/δ)) bits of memory and O(d log(kw/ε�δ)
per-element update time. If |X | = Ω̃ (SC(d, k, ε, δ, �, w)), then with probability at
least 1 − δ, it will find a set of cells, V, such that

1. For V1, V2 ∈ V such that V1 �= V2, V1 ∩ V2 = ∅ and |V| ≤ 2k.
2. There exists a function Fm such that Fm is invariant in the mth component

in each V ∈ V and such that
∫

R |F − Fm| ≤ ε�/(6d).
3.

∫
R\(∪V ∈VV ) F ≤ ε�/(3d),

where R is the bounding box.

The algorithm thus finds a set of disjoint cells, such that for all V ∈ V , F in
V is very close to invariant in the mth component (note that the algorithm
guarantees the existence of Fm but only finds V , not Fm). The last condition
implies that the cells in V contain nearly all the weight of F in R.

Our learning algorithm Learn(d, k) will run FindBoundary(d, k, m) for
all m = 1, . . . , d. The output of each call will consist of a set of cells Vm that
are invariant in the mth component. Let Vm ∈ Vm be a cell that is invariant in
the mth component. For any two indices 1 ≤ m1 < m2 ≤ d, consider the d-cell
C = Vm1 ∩ Vm2 . F , restricted to C, is close to a function that is invariant in
the m1th component, and also close to another function that is invariant in the
m2th component. Intuitively, such an F should be close to a function that is
invariant in the m1th and m2th components simultaneously in C.

Extending the reasoning further, let C = V1 ∩ . . . ∩ Vd. Then F restricted to
C is close to a function that is invariant in the mth component, for all m. In the
full version, we prove that this will imply that F is close to constant in C.

2.1 The Algorithm

We present Learn(d, k) in Figure 1. We will call FindBoundary(d, k, m)
for each dimension m = 1, . . . , d; from the resulting sets Vm, we will decompose
R into cells R̃i such that F is close to invariant in R̃i in all d components. We
will then treat F as if it were constant on R̃i, and estimate the density in R̃i by
simply counting the number of sample points that lie in R̃i.
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Input: Datastream X.
1. Run in parallel FindBoundary(d, k, m) for all m = 1, . . . , d. Let the output

consist of sets V1, V2, . . . , Vd.
2. Compute the set of cells consisting of all cells of the form V1 ∩ V2 ∩ . . . , Vd for all

choices of V1 ∈ V1, . . . , Vd ∈ Vd. Call this set of cells
{

R̃i

}
.

3. In a single pass, count
∣∣∣X ∩ R̃i

∣∣∣ for all i.

4. (a) On the rectangle R̃i, estimate the density as
∣∣∣X ∩ R̃i

∣∣∣ /
(
|X|vol

(
R̃i

))
.

(b) On the set R \ (∪iR̃i), estimate the density as 0.

Fig. 1. Algorithm Learn(d, k)

Theorem 2. If |X | = Ω̃
(
k2dSC(d, k, ε, δ, �, w)

)
, then with probability at least

1 − δ, Learn(d, k) will compute an estimate G such that
∫

|F − G| ≤ ε� in

2� + 1 passes, using Õ
(
(2k)d + k2d4

ε2 log(1/δ) + �kd2

ε log(1/δ)
)

space and per-

element update time O(d2 log(kw/ε�δ)).

Proof. From Theorem 1, we know that each call to FindBoundary(d, k, m)
will output a set of d-cells Vm such that there exists a function Fm that is
invariant in the mth component on each V ∈ Vm and that satisfies

∫
R

|Fm − F | ≤
ε�/6d. For each rectangle R̃l found in Step 2, this is true for all m simultaneously.
Note that since |Vm| ≤ 2k,

∣∣∣
{

R̃i

}∣∣∣ ≤ (2k)d.

Fix such a rectangle R̃l. The following property is a precise statement of the
intuitive idea that F should be close to constant in R̃l. The proof has been
omitted because of space constraints.

Property 1. There exists a constant cR̃l
such that

∫

R̃l

∣∣F − cR̃l

∣∣ ≤ 2
d∑

i=1

∫

R̃l

|Fi − F | . (1)

The VC dimension of the set of all d-cells (intersections of 2d axis-aligned half
spaces in R

d) is 2d. Since X is drawn according to F , we have chosen our sample
complexity so that the VC bound implies that

Pr

⎡
⎣sup

i

∣∣∣∣∣∣

∣∣∣X ∩ R̃i

∣∣∣
N

−
∫

R̃i

F

∣∣∣∣∣∣
≤ ε�

3(2k)d

⎤
⎦ ≥ 1 − δ,

where N = |X |.
Let αi =

∣∣∣X ∩ R̃i

∣∣∣ /Nvol
(
R̃i

)
be our algorithm’s estimate of F in R̃i. We

now sum our bound on the error of our estimate in each rectangle R̃i.
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∑
i

∫

R̃i

|F − αi| ≤
∑

i

∫

R̃i

⎛
⎝

∣∣∣∣∣∣
αi −

∫
R̃i

F

vol
(
R̃i

)
∣∣∣∣∣∣
+

∣∣∣∣∣∣
F −

∫
R̃i

F

vol
(
R̃i

)
∣∣∣∣∣∣

⎞
⎠

≤ (2k)d ε�

3(2kd)
+

∑
i

∫

R̃i

∣∣cR̃i
− F

∣∣

≤ ε�

3
+ 2

d∑
m=1

∫

R

|Fm − F | ≤ 2ε�

3

Lastly, we bound the error induced by estimating F as 0 on the set R\ (∪R̃i).
Let V̄m = R \ {∪Vi∈VmVi} be the set for which Fm is not invariant in the
mth component, so that R \ (∪R̃i) = ∪mV̄m. By Theorem 1, we know that∫

V̄m
Fdx ≤ ε�/(d · 3). Thus,

∫

R\(∪R̃i)

F ≤
∑
m

∫

V̄m

F ≤ ε�

3
.

The total error of the algorithm is therefore ε�.

Corollary 1. There exists a 2� + 1 pass algorithm that, with probability at least
1 − δ, will learn a mixture of uniform distributions in R

d with error at most ε,
using space at most Õ(k2d4

ε2/� log(1/δ) + (2k)d).

Proof. If we transform the parameter ε to ε1/�, then we may assume that � =
O(log 1/ε) (more passes would not decrease the memory requirement).

3 An Algorithm for Learning the Location of Boundary
Edges

Algorithm FindBoundary(d, k, m) computes a decomposition of R into a set
of cells V that are invariant in the mth component. Roughly stated, it does so
by ensuring that each cell V ∈ V does not contain an mth-component bound-
ary cell of a mixture cell, (which is just the natural geometric concept of the
boundary of a rectangle).

Definition 3 (boundary). The boundary of a d-cell K = (a1, b1) × . . . ×
(ad, bd) consists of the 2d d-cells defined by (a1, b1)× . . .× (ai, ai)× . . .× (ad, bd)
and (a1, b1)× . . .× (bi, bi)× . . .× (ad, bd) for i = 1, . . . , d. The two cells for which
i = m are called mth component boundary cells.

Informally, an mth component boundary cell is a d − 1 cell embedded in R
d,

such that the mth component of the boundary cell is the same for all points in
the cell. Our interest in mth component boundary cells is summarized in the
following, very intuitive, property. The proof is straightforward and has been
omitted from this preliminary version.
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P1 P2 P3 P4

R1

K

boundary edge
1st−component

Fig. 2. K and R1 are 2-cells. The boundaries of K and R1 are illustrated by their
respective rectangular outlines. P1, P2, P3, P4 comprise a partition of the 1st component
of K. Note that the 1st-component boundary edges of R1 are completely contained in
single partition cells.

Lemma 1. If a d-cell K does not contain any mth component boundary cells of
mixture rectangles then F , restricted to K, is invariant in the mth component.

Definition 4. A partition of the mth component of d-cell R = (a1, b1) ×
. . . × (ad, bd) is a set of cells of the form Pi = {x ∈ R|ui ≤ xm < ui+1} (i.e.
Pi = (a1, b1) × . . . × (am−1, bm−1) × (ui, ui+1) × (am+1, bm+1) × . . . × (ad, bd)),
where am = u1 ≤ u2 ≤ . . . ≤ u|Pm| = bm, where Pm is the set of partition cells
Pm = {Pi}.

Note that an mth component boundary cell of a mixture rectangle is completely
contained in a single partition rectangle. See Figure 2 for an illustration.

The algorithm FindBoundary(d, k, m) requires a subroutine Invariant(d,
k, m) that will check if F is (approximately) mth component invariant when
restricted to the d-cell K. We will defer the proof of the following theorem to
Section 4.

Theorem 3. Let X be a datastream that contains samples from a mixture of k
uniform distributions in R

d with density function H and bounding box R and let
β > 0 be some error parameter. If |X | = Ω

(
kd(kwd)2d

β2d log(kdw/βδ)
)

then with
probability at least 1 − δ, algorithm Invariant(d, k, m) will accept if H is
invariant in the mth component and reject if there does not exists a function
Ĥ that is invariant in the mth component such that

∫
R

∣∣∣H(x) − Ĥ(x)
∣∣∣ ≤ β.

Invariant(d, k, m) requires Õ(d log2(kdw/β) log(1/δ)) bits of memory and
O(d log(kw/(βδ))) per-element update time.

3.1 The Algorithm

We first give an overview of algorithm FindBoundary(d, k, m). It is organized
into � pairs of passes. In the first pass of each pair, it takes a small sample from
the datastream and uses it to find a partition Pm, such that all cells have roughly
equal probability mass. In a second pass, it tests each partition cell for invariance
in the mth component. Invariant(d, k, m) uses the large amount of data in the



220 K.L. Chang

Input: Datastream X, |X| = Ω̃(SC(d, k, ε, δ, �, w)) Initialize: p ← 1.
1. (a) If p = 1, set M = Θ̃

(
d2k2/ε2

)
. If p > 1, set M = Θ̃

(
1/ε2

)
.

(b) In one pass, draw a sample S of size M from the data stream, uniformly at
random.

2. (a) If p = 1, set α ← c0ε/(kd). If p > 1, set α ← c1ε for constants c0, c1

(determined by Lemma 3).
(b) Compute a partition of the mth component such that for all Pi ∈ Pm,

|Pi ∩ X| = M · α.
3. Set Cp ← {Pi ∪ Pi+1|Pi ∈ Pm}.
4. In a second pass, run algorithm Invariant(d, k, m) with error parameter(

8
10

)� ε2�

150k3d2 on XCi for all Ci ∈ Cm in parallel. Mark Ci that are rejected.
5. Compute Dp ← ∪

Cimarked(Ci ∪ Ci−1 ∪ Ci+1) to be the union of all marked Ci,
as well as Ci−1 and Ci+1.

6. (a) If p ≤ �, set p ← p + 1. In parallel, call FindBoundary(d, k, m) on each
cell of Dp.

(b) If p = �, then output the cells of R \ D� as the set V of cells that are
approximately invariant the mth component.

Fig. 3. Algorithm FindBoundary(d, k, m)

data stream to perform this test with very high accuracy. A cell is rejected only
if it contains an mth component boundary cell (the converse is not necessarily
true; see Lemma 4). For cells that are rejected, we iterate; the key is that these
cells contain much less probability weight than the original bounding box and
therefore will be sampled much more densely (but with the same overall sample
size) and we will get better estimates for these interesting cells.

In the final iteration, the rejected partition cells C that contain mth com-
ponent boundary cells have only a very small aggregate weight (roughly ε�/d).
Thus, R \ ∪rejectedC consists of 2k cells that are all close to invariant in the
mth component and contain most of the weight of F .

For a cell C, we define the datastream XC to be the datastream consisting of
samples in X ∩ C. A pass over X can simulate a pass over XC . We describe the
algorithm in Figure 3.

Remark 1. Since Invariant(d, k, m) will only reject a cell that contains an
mth component boundary cell of a mixture rectangle, each cell C ⊂ Dp must
contain such a boundary cell, of which there are at most 2k. This implies that
R\D� is a union of at most 2k+1 cells. Therefore the set of output cells V , which
corresponds to cells that are approximately invariant in the mth component, has
at most 2k + 1 cells. (In fact, it can be shown to have only 2k − 1 cells.)

We call the value of p the level of the call.

Lemma 2. The number of recursive calls at any level is at most 2k.
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Lemma 3. With probability at least 1 − δ/(10d), for any cell C ∈ Cp created by
the algorithm in Step 3 of iteration p:

(
8
10

)p
εp

12 · k · d
≤

∫

C

F ≤ εp

12 · k · d
.

Proof sketch. The lemma can be proved by an induction argument on the level,
coupled with straightforward applications of the VC bound and the fact that
the VC dimension of the family of d-cells in R

d is 2d.

Lemma 4. For each Vi ∈ V, there exists a function F̂Vi that is invariant in the
mth component such that

∑
i

∫
Vi

∣∣∣F̂Vi − F
∣∣∣ ≤ ε�

6d .

Due to the structure of the algorithm, each V ∈ V can be written as a union
of cells (possibly overlapping), V = ∪jCj , such that each cell Cj is accepted
in Step 4 of some iteration of the algorithm. Note that a cell Cj that contains
an mth component boundary cell of a mixture rectangle is not always rejected
by Invariant(d, k, m) in the case when the error induced by estimating F as
invariant in the mth component in Cj is very small. Therefore, restricted to each
Cj , F is close to some function that is invariant in the mth component, but the
technical difficulty lies in finding a single mth component invariant function F̂V

that is a good approximation to F for all of V = ∪jCj .

Proof sketch. Assume without loss of generality that m ← d.
Recall that all points in a dth component boundary of a mixture rectangle

have the same value in the dth component. Since there are at most 2k of these
boundary cells, there are at most 2k such values. Let qi, i = 1, . . . , 2k be these
values in sorted order. Note that q1 and q2k correspond to values on the bounding
box. Consider the partition of R of the dth component given by Q = {Qi}, where
Qi = {x ∈ R|qi ≤ xd ≤ qi+1} for i = 1, . . . , 2k. Restricted to each of these Qi, F
is invariant in the dth component.

Define the extension of F in Qi to be the function F̂Qi : R → R given by:

F̂Qi(x) = F (x1, . . . , xd−1, y)

for any y ∈ (qi, qi+1). Since F̂Qi is invariant in the d-th component and F̂Qi(x) =
F (x) for x ∈ Qi, F̂Qi is the natural notion of extending F in Qi to the rest of
the bounding box R.

Fix a V ∈ V . We have designed Step 3 of the algorithm in order to guarantee
that for Qi such that Qi ∩ V �= ∅ and Qi+1 ∩ V �= ∅, there exists a cell C∗ ⊂ V
such that C∗ was accepted by Invariant(d, k) and that for some constant c,

∫

C∗∩Qi

F ≥ c
ε�

k2d
,

∫

C∗∩Qi+1

F ≥ c
ε�

k2d
.

Due to the fact that C∗ was accepted, it can be shown that F̂Qi is a good
approximation to F restricted to C∗. Since C∗ ∩ Qi and C∗ ∩ Qi+1 both carry a
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large amount of probability mass, it can be shown that F̂Qi is a good approxi-
mation to F in Qi+1, since F is invariant in the dth component in Qi+1. In this
manner, an inductive proof will show that F̂Qi is a good approximation to F in
all Qj such that Qj ∩ V �= ∅.

Proof (of Theorem 1). We omit the calculation of memory requirements, but it
is straightforward. Theorem 1 follows from combining the previous lemma with
the fact that the set R \ (∪Vi∈VVi) consists of the at most 2k cells that were
rejected in an �th level call to FindBoundary(d, k, m). By Lemma 3, the
probability weight of these cells is only 2k · ε�/6kd.

4 Checking for mth Component Invariance

We now present the algorithm Invariant(d, k, m). In order to ease our notation,
we will assume without loss of generality that m ← d and that the bounding
box of H is given by R = (0, b1) × (0, b2) × . . . × (0, bd), where bi ≤ 1.

Our exposition of Invariant(d, k) will compose of three parts: First, we
define a sufficient condition for establishing that H is close to invariant in the
dth component. We will then propose an estimator γ�j,i and prove that γ�j,i can be
used to test the condition. Lastly, we give an algorithm for actually performing
the test in a single pass with a small amount of memory. As in [1], the main
algorithmic tool that we use is Indyk’s one pass algorithm for computing the �1

length of a vector given as a stream of dynamic updates.

Definition 5. We define a regular partition parallel to the dth component
Pη to be the partition of a d-cell R = (0, b1) × . . . × (0, bd) into (1/η)d−1 d-cells{
P�j

}
: for all 
j ∈ [1/η]d−1,

P�j ={x ∈ R| ((j1 − 1)ηb1, j1ηb1) × . . . × ((jd−1 − 1)ηbd−1, jd−1ηbd−1) × (0, bd)} .

We will refer to the d-cells P�j ∈ Pη as partition cells.

The partition is thus a partition of R into a set of d-cells with the same dimen-
sions, such that each component except the dth is partitioned into 1/η intervals.
Note that vol

(
P�j

)
= ηd−1vol (R) and that |Pη| = 1

ηd−1 .
Informally, each partition cell is a long, thin strip, with its long side along the

dth component. The main idea is that if F is close to constant in most of these
partition cells, then F should be close to invariant in the dth component.

More precisely, Invariant(d, k) will check if there exists a constant cP�j
such

that α�j , the error of estimating H(x) as the constant cP�j
on P�j , is small, where

α�j =
∫

P�j
|H − cP�j

|. For technical reasons, we will need to classify cells as good
or bad and will only be concerned with the good partition cells; this is possible,
because the aggregate volume of bad partition cells is small (Lemma 5). Parti-
tion cell P is bad if it contains an mth component boundary cell of a mixture
rectangle, for m < d. Otherwise, P is good. Note that a good P may contain
dth component boundary cells.
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Let G ⊂ Pη be the set of good partition cells and B = Pη \ G be the set of
bad partition cells.

Lemma 5. |B| ≤ 2kd
ηd−2

Proof. Any boundary cell of a mixture rectangle, except dth component bound-
ary cells, can intersect at most 1/ηd−2 partition cells. There are at most k mixture
cells, each of which has 2d boundary cells.

Lemma 6. Suppose that η ≤ β
2·k·d·w . If there exist constants c�j for all P�j ∈ G

such that ∑
P�j∈G

α�j =
∑

P�j∈G

∫

P�j

∣∣∣H(x) − c�j

∣∣∣ ≤ β

4
,

then there exists a function H̃ that is invariant in the dth component such that
∫

R

∣∣∣H(x) − H̃(x)
∣∣∣ ≤ β.

Proof sketch. We can prove the lemma by making the obvious choice of dth
component invariant function H(x) = c�j for x ∈ P�j such that P�j ∈ G, and
H(x) = 0 otherwise. Bad partition cells do not contribute very much to the
error, since they have little aggregate weight from the previous lemma.

4.1 Estimating α�j from the Datastream

We now describe an estimator γ�j,i for α�j in a good partition d-cell P�j ∈ Pη,
and prove properties of γ�j,i. Note that we do not provide an algorithm until
Section 4.2.

Recall that P�j = ((j1−1)ηb1, j1ηb1)×. . .×((jd−1−1)ηbd−1, jd−1ηbd−1)×(0, bd)
for the vector 
j ∈ [1/η]d−1. Let ζ > 0 (assume that 1/ζ is an integer). We further
partition P�j ∈ Pη into 1/ζ d-cells of equal volume.

Definition 6. For each integer i ∈ [1/ζ], define the sub-partition d-cell P�j,i

by P�j,i =
{

x ∈ P�j |(i − 1)ζbd ≤ xd ≤ iζbd)
}
.

We define the following random variables:

1. N�j,i =
∣∣∣X ∩ P�j,i

∣∣∣
2. γ�j,i = |N�j,i−ζ

∑
l N�j,l|

N

N�j,i is the number of samples that lie in P�j,i; since ζ
∑

l N�j,l is the average
number of points in each of the sub-partition cells of P�j , γ�j,i is the difference
between N�j,i and what we would expect if H were actually constant in P�j .
Therefore, if

∑
i γ�j,i is small, then α�j should be close to constant:

Lemma 7. Let ζ ≤ β
64k·w and fix P�j ∈ G. If X = Ω

(
d3k

β2ζ2η2d−2 log(1/ζβδη)
)
,

then with probability at least 1 − δ/2,
∑

i γ�j,i ≥ α�j + βηd−1

8 .
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The proof of the Lemma has been omitted due to space constraints. The basic
idea of the proof is to consider two cases: P�j,i in which H is constant and P�j,i in
which H contains a boundary cell. For the former case, it can be shown that γ�j,i

is a good estimate of the quantity of interest. For the latter case, such cells can
be proved to have a very small aggregate weight and can therefore be disregarded
without incurring a large error.

Corollary 2. With probability at least 1 − δ/2, if
∑

�j

∑
i γ�j,i ≤ β/8, then there

exists a function H̃ that is invariant in the dth component such that
y
∫

R

∣∣∣H(x) − H̃(x)
∣∣∣ ≤ β.

Lemma 8. With probability at least 1 − δ/4, if H is invariant in the dth com-
ponent, then

∑
�j

∑
i γ�j,i ≤ β

16 .

4.2 A One Pass, Small Space Algorithm

Corollary 2 and Lemma 8 prove that an algorithm that accepts if
∑

�j

∑
i γ�j ≤

β/12 and rejects otherwise will accept if H is invariant in the dth component,
and will reject if H is not within β of an invariant function.

A naive one pass algorithm to compute the estimator
∑

�j,i γ�j,i would explicitly
keep one counter for each of the 1/(η ·ζ) N�j,is, which requires too much memory.
Indyk [4] designed a one-pass algorithm for approximating the �1 length of a
vector given as a stream of dynamic updates (very similar to the histogram
problem mentioned in the related works section). The input is a stream of update
pairs 〈a, i〉, where a ∈ [−M, M ] and i ∈ [n], that represent the semantics: add
a to the ith component of vector 
v ∈ R

n. The problem is then to approximate
||
v||1 =

∑n
i=1 |vi| after processing all of the input pairs. The following theorem

is an adaptation of a more general result:

Theorem 4 (Indyk[4]). There exists a one pass algorithm that, with probabil-
ity at least 1 − δ, will find an approximation ι such that 2

3 ||
v||1 ≤ ι ≤ 4
3 ||
v||1

using at most O(log M log(n/δ)) bits of memory and O(log(n/δ)) per-element
update time.

The high level idea of this algorithm is that instead of storing all n components
of 
v, it stores the components of a random projection of 
v to a low dimensional
subspace. The random matrix that defines the projection is compressed by only
storing the seed of a pseudorandom number generator; the entries of the matrix
are generated on the fly, as needed.

We present in Figure 4 the details of our algorithm Invariant(d, k).

Proof (of Theorem 3). Due to the guarantees of Indyk’s algorithm, ι
N will satisfy:

2
3

||v||1
N

≤ ι

N
≤ 4

3
||v||1
N

.
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Input: Datastream X.
1. Set η ← β

8·k·w·d and ζ ← β
64·k·w

2. Fix any bijection φ : [1/η]d−1 × [1/ζ] → [1/(ηd−1ζ)].
3. Initialize Indyk’s algorithm to update the vector �v ← �0.
4. While data stream is not empty:

(a) Read sample x from data stream.
(b) Calculate �j and i such that x ∈ P�j,i.

(c) Process the pair
〈
1, φ(�j, i)

〉
with Indyk’s algorithm.

(d) For l = 1, . . . , 1/ζ, process the pairs:
〈
−ζ, φ(�j, l)

〉
with Indyk’s algorithm.

5. Let ι be the output of Indyk’s algorithm. accept if ι
N

≤ β/12 and reject
otherwise.

Fig. 4. Algorithm Invariant(d, k)

Note that the φ(
j, i)th component of v is exactly: vφ(�j,i) = N�j,i−ζ
∑

l N�j,l. Thus,
||v||1

N =
∑

�j

∑
i γ�j,i. Therefore, the algorithm will accept if

∑
�j

∑
i γ�j,i ≤ β/16

and will reject if
∑

�j

∑
i γ�j,i > β/8. The theorem follows from Corollary 2 and

Lemma 8.
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Learning Efficiency of Very Simple Grammars

from Positive Data
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Abstract. The class of very simple grammars is known to be polynomial-
time identifiable in the limit from positive data. This paper gives even
more general discussion on the efficiency of identification of very simple
grammars from positive data, which includes both positive and negative
results. In particular, we present an alternative efficient inconsistent learn-
ing algorithm for very simple grammars.

1 Introduction

While efficient identification in the limit from positive data of nonregular lan-
guages is a topical issue of grammatical inference, there is no consensus on the
definition of efficient identification in the limit. Every definition of efficient learn-
ing proposed so far requires an algorithm to update its conjecture in polynomial
time at least. Throughout this paper, when we simply say an algorithm runs in
polynomial time, it means that the update time is bounded by a polynomial in
the total size of the given data. However, as Pitt [1] discussed, every successful
learning algorithm can be modified into polynomial-time one in the above sense,
though it could be intuitively inefficient. His trick lets a learning algorithm com-
pute its conjecture from some small prefix of the input while the rest of the
input is used only as an excuse for its long running time. We need to impose
some other condition(s) to prevent Pitt’s trick.

Most of learning algorithms proposed so far are consistent and conservative.
An algorithm is consistent if the conjecture of the algorithm is always consistent
with the given data. An algorithm is conservative if the algorithm changes its
conjecture only when the previous conjecture contradicts the newly given ex-
ample. In fact, the combination of those conditions is restrictive enough to stop
Pitt’s trick from working. Those conditions are, however, not mandatory. Lange
and Wiehagen’s [2] algorithm for learning pattern languages from positive data
is not consistent but it is iterative, i.e., it computes a new conjecture only from
the newly given example and the current conjecture. Iterativeness is also strong
enough to prevent Pitt’s trick.

Moreover, not only each update time, how quickly the learning algorithm con-
verges to the target is also an important issue. One cannot give any upper bound
on the gross amount of time that the learner has spent until it converges, because
the learner has no control over the given data. Pitt [1] proposed to measure the
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efficiency of learning algorithms by counting the number of implicit errors of
prediction, where an algorithm makes an implicit error of prediction if the newly
given example contradicts the current conjecture. An efficient learning algorithm
should make implicit errors of prediction at most polynomial times in the size
of the target representation before it converges. De la Higuera’s [3] definition re-
quires efficiently learnable languages to admit a characteristic set of polynomial
size in the size of a smallest representation of the language such that whenever
the given data includes the characteristic set, the learner successfully converges
to a representation of the target language. Those two definitions originally target
learning from complete (i.e., both positive and negative) data and are restrictive
enough to exclude Pitt’s trick.

It is a natural idea to apply those proposals to learning from positive data
only. However, we should be conscious of the difference between learning from
complete data and from positive data. For instance, concerning Pitt’s definition,
while it is not a trivial task to find a representation that are expected to be
consistent with the forthcoming positive and negative examples, a representation
of the language Σ∗ is trivially consistent with any positive examples where Σ
is the alphabet of the target language. As we will see later, this entails that the
naive straightforward application of Pitt’s definition to learning from positive
data almost spoils the restriction of polynomial-time updating. On the other
hand, although Pitt argued that counting the number of mind changes, i.e., times
the learner changes its conjecture, does not make sense when learning regular
languages from complete data, his discussion does not work when learning from
positive data.

Whatever we adopt as the definition of efficient algorithms, currently not
many nonregular subclasses of context-free languages are known that deserve to
be called “efficiently” learnable from positive data in nontrivial sense, except for
subclasses of even linear grammars whose learning problems are reducible to that
of efficiently learnable subclasses of regular languages [4]. Clark and Eyraud [5]
presented a polynomial-time learning algorithm for substitutable context-free
languages. Their algorithm is consistent, conservative and admits a character-
istic set (in the sense of de la Higuera) of polynomial cardinality. Yokomori [6]
proposed a polynomial-time learning algorithm for very simple grammars, which
is consistent and conservative. After his work, Wakatsuki et al. [7] and Yoshi-
naka [8] showed that Yokomori’s technique is applicable to some related classes
of languages.

This paper investigates the learning efficiency of very simple grammars from
positive data in various senses. Section 2 discusses possible definitions of effi-
cient identification in the limit from positive data, particularly in comparison
with learning from complete data. In Section 3, we define and show some basic
properties of very simple grammars and one-counter simple grammars, which
are very simple grammars that have exactly one nonterminal symbol. Section 4
presents a polynomial-time learning algorithm for one-counter simple grammars
that is consistent and conservative and satisfies Pitt’s and de la Higuera’s defi-
nitions if we regard |Σ| as a constant. Moreover, one-counter simple grammars
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admit even more efficient iterative algorithm if we abandon the consistency, as
Lange and Wiehagen’s algorithm for pattern languages. It runs in polynomial
time regardless of whether Σ is fixed or not. At the same time, we give some
negative results about the efficiency of learning one-counter simple grammars
from positive data, which are applicable to very simple grammars. Section 5
investigates the mathematical properties of Yokomori’s [6,9] learning algorithm
for very simple grammars and gives some positive and negative results. While
his algorithm does not satisfy Pitt’s definition of polynomial-time identifiability,
we present an alternative polynomial-time algorithm learning very simple gram-
mars from positive data that changes its conjecture at most linear times in the
cardinality of the alphabet.

2 Efficient Learning from Positive Data

Preliminaries. N and Z denote the sets of positive integers and integers, re-
spectively. ∅ is the empty set. An alphabet Σ is a finite nonempty set of symbols.
A string w over Σ is a sequence of symbols in Σ, and Σ∗ denotes the set of all
strings over Σ. A language over Σ is any subset of Σ∗. For a set Σ, |Σ| denotes
the cardinality of Σ and for a sequence w ∈ Σ∗, |w| denotes the length of w.
The size of a finite language K is given as ‖K‖ =

∑
w∈K |w|. A hypothesis space

is a pair (G, L) where G is a set of finite descriptions called representations and
L is a function mapping elements of G to languages. When no confusion occurs,
we denote the hypothesis space simply by G. Throughout this paper, we only
consider hypothesis spaces G whose universal membership problems are decid-
able, i.e., the language consisting of pairs (G, w) with G ∈ G and w ∈ L(G) is
recursive.

A positive presentation of a language L∗ is a surjection R from N to L∗.
As usual, a positive presentation R is described as the infinite sequence (R(1),
R(2), . . .). Each R(i) is called a positive example of L∗. A learning algorithm
A on a hypothesis space G is an algorithm which takes a positive presentation
R as input, and outputs some infinite sequence G1, G2, . . . of representations
in G, i.e., A infinitely repeats the cycle where A receives R(n) and outputs a
representation Gn in G for n = 1, 2, . . . . We denote the nth output of A on a
positive presentation R by A(R, n). A learning algorithm A converges to G on
a presentation R if for all but finitely many n, A(R, n) = G. A identifies a class
L of languages in the limit from positive data if for every positive presentation
R of every L∗ ∈ L, there is G ∈ G such that L(G) = L∗ and A converges to
G on R. We also say A identifies a class G of representations in the limit if A
identifies the class of the languages represented by the elements of G in the limit.

We say that A updates its conjecture in polynomial time (or simply A is a
polynomial-time algorithm) iff it computes A(R, n) in polynomial time in |R(1)|+
· · · + |R(n)| for any R and n. For a language K, a representation G is said to
be consistent with K iff K ⊆ L(G). A is consistent if A(R, n) is consistent with
{R(1), . . . , R(n)} for any R and n. A is conservative if A(R, n + 1) = A(R, n)
whenever A(R, n) is consistent with {R(n + 1)} for any R and n.
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A complete presentation of a language L∗ over Σ is a function R from N to
{0, 1} × Σ∗ such that w ∈ L∗ iff R(i) = (1, w) for some i and w ∈ Σ∗ − L∗ iff
R(i) = (0, w) for some i. For each R(i) = (j, w), w is called a positive example
of L∗ if j = 1 and w is called a negative example of L∗ if j = 0. A representation
G is said to be consistent with Rk = {R(1), . . . , R(k)} iff every positive example
appearing in the set Rk is in L(G) and no negative example appearing in the set
Rk is in L(G). The notions of identification in the limit from complete data etc.
are defined similarly to identification in the limit from positive data etc.

Efficient Learning from Positive Data. This section discusses possible def-
initions of “efficient” identification in the limit from positive data. There are
several different definitions that formalize the notion of efficient identification.
To update its conjecture in polynomial time in the size of the input is a common
property among them, however Pitt [1] showed that every successful learning
algorithm can be modified so that it runs in polynomial time. Roughly speak-
ing, his trick lets the algorithm compute the conjecture from appropriately small
prefix of the input so that the computation is done in polynomial time in the
size of the whole input. Hereafter we refer to this trick as Pitt’s trick.

Against this problem, Pitt has introduced the notion of implicit errors of
prediction. Note that the original definition concerns learning from complete
data. An algorithm makes an implicit error of prediction at step n iff A(R, n) is
not consistent with {R(n + 1)}. A class G of representations is polynomial-time
identifiable in the limit in Pitt’s sense iff G admits a polynomial-time learning
algorithm A such that

– for any presentation of L(G) for G ∈ G, A makes implicit errors of prediction
at most polynomial times in ‖G‖, where ‖G‖ is the description size of G.

Yokomori [10] proposed to relax Pitt’s definition. A class G of representations
is polynomial-time identifiable in the limit in Yokomori’s sense iff G admits a
polynomial-time learning algorithm A such that

– for any presentation R of L(G) for G ∈ G and n ∈ N, the number of implicit
errors of prediction made by A on the first n examples is bounded by a
polynomial in ‖G‖l where l = max{ |R(1)|, . . . , |R(n)|}.

On the other hand, de la Higuera’s [3] definition demands the existence of char-
acteristic sets of polynomial size. As Pitt’s definition, the original definition
concerns learning from complete data. A class G of representations is identifi-
able in the limit from polynomial time and data iff G admits a polynomial-time
learning algorithm A such that

– A is consistent,
– for each G ∈ G, there is a finite set K (called a characteristic set) of examples

such that
• ‖K‖ is bounded by a polynomial in ‖G‖,
• G is consistent with K,
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• for any presentationR of L(G) and n∈N, whenever K ⊆{R(1), . . . , R(n)},
L(A(R, n)) = L(G) and A(R, n) = A(R, n + 1).

One might expect that those definitions work well also when learning from
positive data only. We however should be conscious of the difference between
learning from complete data and learning from positive data.

We say that an algorithm changes its mind if the new conjecture is different
from the previous one. First we propose to count the number of mind changes
rather than implicit errors of prediction when learning from positive data. Pitt [1]
refuted the idea that considers the number of mind changes as a measure of the
efficiency of an algorithm, when he proposed to count the number of implicit
errors of prediction. His discussion shows that when learning from complete
data, if the equivalence problem for the target class is decidable, then it admits
a polynomial-time learning algorithm that changes its mind at most linear times
in the size of the target representation. However, his technique does not work
when learning from positive data. Giving an upper bound on the number of mind
changes of a learning algorithm is not a trivial issue when learning from positive
data.

Besides, counting the total number of implicit errors of prediction is not more
restrictive than counting the number of mind changes when learning from pos-
itive data. For every learning algorithm A1 we get another algorithm A2 that
makes implicit errors of prediction at most |Σ| more times than A1 changes its
conjecture on the same positive presentation. We design A2 so that it outputs
the same conjecture as A1 whenever the output of A1 is consistent with the
input, and otherwise outputs GΣ with L(GΣ) = Σ∗ where Σ is the set of letters
appearing in the input.1 A2 is consistent. When A2 makes an implicit error of
prediction, there are two cases: (i) the current conjecture is GΣ and the newly
given example includes a letter not in Σ, or (ii) the current conjecture G is from
A1. The former case (i) occurs at most |Σ| times and the latter case (ii) occurs
not more than A1 changes its conjecture, because A2 will never output the same
conjecture G again. Note that if the universal membership problem for the hy-
pothesis space of A1 is solved in polynomial time and A1 updates its conjecture
in polynomial time, then A2 also runs in polynomial time. Therefore, we propose
to count the number of mind changes rather than implicit errors of prediction
when learning from positive data due to the simplicity of the definition.

Here we see the difference of the roles of consistency between learning from
complete data and learning from positive data. When learning from complete
data, it is not a trivial task to find a representation that is expected to be
consistent with the forthcoming positive and negative examples. On the other
hand, when learning from positive data, the language Σ∗ trivially contains any

1 Note that we allow an algorithm to output a conjecture outside the target class,
so any algorithm on a standard representation formalism is allowed to conjecture
the language Σ∗. Prohibition of outputting representation outside the target class
does not seem to be an essential restriction, because in fact many efficiently learn-
able classes include the language Σ∗, e.g., zero-reversible languages [11], pattern
languages [12,2], substitutable context-free languages [5], etc.
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positive examples including ones that will be given in the future as long as the
alphabet is not expanded. When learning from complete data, counting number
of implicit errors of prediction is powerful enough to prevent Pitt’s trick. When
learning from positive data, counting mind changes is at least as restrictive as
counting implicit errors of prediction, but, is not powerful enough to prevent
Pitt’s trick. We need to find some further conditions, though giving an upper
bound on the number of mind changes of a learning algorithm is not a trivial
issue when learning from positive data.

One persuasive solution for this problem would be to impose both consis-
tency and conservativeness to polynomial-time learning algorithms. Consistency
only is not restrictive enough, because one can modify any successful algorithm
learning from positive data so that it is consistent and runs in polynomial time
by combining Pitt’s trick and the technique converting A1 into A2 if the uni-
versal membership problem for the hypothesis space of the original algorithm
is solved in polynomial time. We also note that conservativeness only is nei-
ther restrictive enough. One can modify any successful conservative algorithm
learning from positive data so that it runs in polynomial time with preserving
the conservativeness. The technique is almost the same as the above construc-
tion of polynomial-time consistent algorithms. Here instead of outputting GΣ ,
the modified algorithm should output G∅ with L(G∅) = ∅. The combination
of conservativeness and consistency forces the algorithm to output a consistent
conjecture whose language does not properly contains any other consistent lan-
guages in the target class. This rejects Pitt’s trick and tricky algorithms such as
A2. In fact consistency and conservativeness are very common properties among
various learning algorithms proposed so far. Under this condition, the numbers
of mind changes and implicit errors of prediction coincide.

On the other hand, consistency is, however, not mandatory. Lange and Wieha-
gen’s [2] polynomial-time algorithm for learning pattern languages from positive
data is not consistent but it is worth calling efficient. We say an algorithm is
iterative iff it computes a new conjecture only from the newly given example
and the current conjecture. Iterativeness is also strong enough to prevent tricky
polynomial-time algorithms. Their algorithm is iterative and moreover admits a
characteristic set of polynomial size.

In fact, the second condition (characteristic set) of de la Higuera’s definition
itself is restrictive enough to prohibit Pitt’s trick. Although it is easy to satisfy
the consistency by the technique constructing A2, de la Higuera’s definition itself
works well when learning from positive data.

Summarizing the above discussion, we have the following possible properties
of learning algorithms from positive data.

Definition 1. Suppose that a learning algorithm A identifies G in the limit
from positive data. A satisfies the properties Pcc, Pup, Pmc+, Pmc−, Pcs, Pit,
respectively, iff

– (Pup): it updates its conjecture in polynomial time in the size of the input,
– (Pcc): it is consistent and conservative,
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– (Pmc+): for any G ∈ G, any positive presentation R of L(G), |{ i | A(R, i) �=
A(R, i + 1), i ∈ N }| is bounded by a polynomial in ‖G‖,

– (Pmc−): for any G ∈ G, any positive presentation R of L(G), any n ∈ N,
|{ i | A(R, i) �= A(R, i + 1), 1 ≤ i < n }| is bounded by a polynomial in ‖G‖l
where l = max{|R(1)|, . . . , |R(n)|},

– (Pcs): for any G ∈ G, there is a finite subset K of L(G) such that
• ‖K‖ is bounded by a polynomial in ‖G‖,
• for anypresentationRofL(G) andn∈N, wheneverK ⊆{R(1), . . . , R(n) },

we have L(A(R, n)) = L(G) and A(R, n) = A(R, n + 1),
– (Pit): it computes new conjecture only from the newly given example and

the current conjecture.

If an algorithm satisfies Pup and Pit, the size of the input is the sum of the sizes
of the newly given example and of the current conjecture.

In the remainder of this paper, we discuss the learning efficiency of very simple
grammars in terms of the above properties.

3 Very Simple Grammars

A context-free grammar (cfg) is a quadruple G = (N, Σ, P, S), where N is a fi-
nite set of nonterminal symbols, Σ a finite set of terminal symbols, P ⊆ N ×(N ∪
Σ)∗ a finite set of production rules, and S ∈ N the start symbol. ⇒G denotes the
one step derivation and ⇒∗

G the reflexive and transitive closure of ⇒G. The lan-
guage generated by G is the set L(G) = { w ∈ Σ∗ | S ⇒∗

G w }. A cfg G is reduced
iff for every A ∈ N ∪Σ, there are x, y, z ∈ Σ∗ such that S ⇒∗

G xAz ⇒∗
G xyz. The

description size of a cfg G is defined as ‖G‖ =
∑

A→ζ∈P |Aζ|.
We use early lower Italic letters for terminal symbols, late lower Italic letters

for sequences of terminal symbols, early upper Italic letters for nonterminal
symbols, and early lower Greek letters for sequences of nonterminal symbols.

Definition 2. A cfg G = (N, Σ, P, S) in Greibach normal form is a very simple
grammar (vsg) iff

A → aα, B → aβ ∈ P implies A = B and α = β.

Moreover a vsg G is a one-counter simple grammar (ocsg) iff N = {S}.

For every reduced vsg, |N | ≤ |P | = |Σ| holds.
Yokomori’s [6, 9] learning algorithm for vsgs considers a condition on the

length of each rule of a grammar consistent with a set of positive examples. He
represents the lengths of rules with a vector of |Σ| dimensions. For notational
convenience, we express the same idea with a homomorphism, rather than a
vector.

A homomorphism � mapping from Σ∗ to Z (�(xy) = �(x) + �(y) for all x, y ∈
Σ∗) is called a shape iff �(a) ≥ −1 for all a ∈ Σ.

For a vsg G = (N, Σ, P, S), the shape of G denoted by �G is defined as

�G(a) = |α| − 1 if A → aα ∈ P for some A ∈ N .

We say that a shape � is compatible with a language L ⊆ Σ∗ iff for all w ∈ L
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– �(w) = −1,
– �(w′) ≥ 0 for any proper prefix w′ of w.

The notion of compatible shapes is the same as that of solution vectors by
Yokomori [6, 9]. The following lemma establishes a close relationship between
finding a consistent vsg with a finite language and finding a compatible shape
with that language.

Lemma 1. Let L be a language over Σ and � a shape on Σ. There is a vsg

(ocsg) G such that �G = � and L ⊆ L(G) iff � is compatible with L.

Lemma 2. Suppose that � is compatible with a language L. For every a ∈ Σ,
�(a) < min{ |y| | xay ∈ L }.

It is a trivial task to decide whether a shape is compatible with a finite language.
Together with �(a) ≥ −1, Lemma 2 ensures that one can enumerate all the shapes
compatible with the given finite set of positive examples.

4 Learning One-Counter Simple Grammars

There is a simple strategy for identification in the limit from positive data of
ocsgs. For a fixed shape, we have a unique (up to the renaming of the start
symbol) ocsg of that shape. By Lemma 1, finding a consistent grammar and
finding a compatible shape are exactly the same task.

Theorem 3. The class of ocsgs admits a learning algorithm with the properties
Pup, Pcc, Pmc+, Pcs when we regard |Σ| as a constant.

Proof. We define the size of a shape � by ‖�‖ =
∑

a∈Σ(�(a)+2), which coincides
with the size of the ocsg of that shape. We give a specification of our algorithm
Amsg here. If the current conjecture is consistent with the newly given example,
Amsg keeps that conjecture. Otherwise, Amsg first finds a compatible shape �
consistent with the input that is minimum with respect to the size ‖�‖. Second
it outputs a grammar with rules S → aS1+�(a) for a ∈ Σ.

The fact that Aocsg identifies the class of ocsgs follows from Pcs.

(Pcc): This property is obvious by definition.
(Pup): Let K be the set of given positive examples. By Lemma 2, every com-

patible shape � satisfies −1 ≤ �(a) ≤ l − 2 where l = max{ |w| | w ∈ K}. Thus
the size of the search space of compatible shapes is bounded by l|Σ|−1 (because
there is at least one terminal b with xb ∈ K, to which every compatible shape
assigns −1). Checking compatibility of a shape � with K is done in linear time
in ‖K‖. Therefore, the update time is bounded by O(‖K‖|Σ|).

(Pmc+): Each shape � has at most ‖�‖|Σ| shapes �′ such that ‖�′‖ ≤ ‖�‖. If
the target grammar G has shape �, Aocsg never outputs a grammar of a shape
of larger size than �. Therefore, by ‖�‖ = ‖G‖ and Pcc, it changes its mind at
most ‖G‖|Σ| times.
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(Pcs): For an ocsg G, let b ∈ Σ be such that �G(b) = −1 and KG be

KG = { ab1+�G(a) | a ∈ Σ } ⊆ L(G).

We have ‖KG‖ ≤ ‖G‖. Clearly KG admits exactly one compatible shape, which
is �G. Whenever a superset of KG is given to the algorithm, it outputs G. ��

Theorem 3 holds if we assume |Σ| as a constant. It is natural to ask if we can
lift this assumption. Here we give two negative results. One is concerning the
update time and the other is about the number of mind changes.

Proposition 4. The following problem is NP-complete:

– Instance: a finite alphabet Σ and a finite language K over Σ,
– Question: does K admit a compatible shape?

Proof. The problem is clearly in NP. We show the NP-hardness by reduction
from a well known NP-complete problem, the satisfiability problem. Let X be a
finite set of Boolean variables and X̄ = { p̄ | p ∈ X }. A clause C is a non-empty
subset of X ∪ X̄ and a formula F is a finite collection of clauses. A valuation on
X is a function φ from X ∪ X̄ to {0, 1} such that {φ(p), φ(p̄)} = {0, 1} for all
p ∈ X . An instance of the satisfiability problem is a pair of a set X of Boolean
variables and a formula F over X . The satisfiability problem is the decision
problem of determining whether there is a valuation φ on X such that for each
clause C ∈ F , there is q ∈ C such that φ(q) = 1.

For a given formula F = { C1, . . . , Ck } over X = { p1, . . . , pm }, let

ΣX = { ai, āi | 1 ≤ i ≤ m } ∪ {b},
KF = { aiāibb, āiaibb | 1 ≤ i ≤ m }

∪ { σ(q1) . . . σ(ql)bτ(q1) . . . τ(ql)bl | Cj = { q1, . . . , ql }, 1 ≤ j ≤ k },

where σ(pi) = ai, τ(pi) = āi for pi ∈ X and σ(p̄i) = āi, τ(p̄i) = ai for p̄i ∈ X̄ .
This reduction can be done in polynomial time. It is not difficult to see that
there is a valuation satisfying F iff KF has a compatible shape. ��

Corollary 5. There is no polynomial-time algorithm that takes Σ and a finite
language K over Σ and outputs a consistent ocsg (if any) unless P = NP.

Proposition 6. Unless we regard |Σ| as a constant, there is no successful learn-
ing algorithm for ocsgs satisfying Pmc− such that it always outputs a consistent
ocsg.

Proof. Let A be a learning algorithm such that it always outputs a consistent
ocsg (if any). Let Σm = { ai, āi | 1 ≤ i ≤ m } ∪ {b}. We show that for any
m, there is an ocsg on Σm of description size O(m) and a sequence of positive
examples of length O(m) on which A changes its mind at least 2m −1 times. Let
K0 = { aiāibb, āiaibb | 1 ≤ i ≤ m } be the set of the first 2m positive examples.
The set of shapes compatible with K0 is given by

Γ = { � | { �(ai), �(āi)} = {0, 1} for 1 ≤ i ≤ m and �(b) = −1 }.
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For � ∈ Γ , let w� = x1 . . . xmby1 . . . ymbm where xi = ai and yi = āi if �(ai) = 0,
and xi = āi and yi = ai if �(ai) = 1. Then, for any �0, �1, . . . , �k ∈ Γ , �0 is a
shape compatible with K0 ∪{w�1 , . . . , w�k

} iff �0 �∈ {�1, . . . , �k}. After A outputs
a grammar of shape � ∈ Γ , w� may be given as the succeeding example. At this
step, A must abandon this conjecture and change its mind. Indeed this is possible
for |Γ | − 1 = 2m − 1 times. The target grammar can be the one constructed on
the last shape in Γ such that w� has not appeared in the presentation yet. ��

Despite the above two propositions, abandon of the consistency enables us to
construct an efficient iterative learning algorithm.

Theorem 7. The class of ocsgs admits a learning algorithm Bocsg with the
properties Pup, Pmc+, Pcs, Pit even when we regard |Σ| as a variable.

Proof. We give the specification of the algorithm Bocsg. Let G = ({S}, ΣG, P, S)
be the current conjecture and w the newly given example.

1. If b �∈ ΣG for w = xb, then add b to ΣG and S → b to P .
2. If there is a �∈ ΣG such that w ∈ (ΣG ∪ {a})∗ − Σ∗

G, then add a to ΣG and
S → aSm to P where m is uniquely determined by the equation �G(w) = −1.

3. Output the updated grammar G.

The properties Pup and Pit are obvious. Whenever Bocsg adds a new rule to
the conjecture, it is indeed a rule of the target grammar modulo renaming the
nonterminal symbol. Thus Bocsg changes its mind at most |Σ| times (Pmc+). KG

in the proof of Theorem 3 is also a characteristic set for Bocsg (Pcs). ��

The algorithm Bocsg has similar properties to the learning algorithm for pattern
languages by Lange and Wiehagen [2]. Although the membership problem for a
pattern language is NP-complete [12], they overcome the intractability of pattern
languages by giving up the consistency. Indeed their algorithm satisfies Pup, Pcs,
Pit when we regard |Σ| as a variable. One different property between Lange
and Wiehagen’s and our algorithms is that the output of their algorithm on a
sequence of positive examples is the same as the one on a permutation of the
sequence, while Bocsg does not have this property. For instance, the output by
Bocsg for the sequence abc, bc is different from the one for bc, abc. The lack of this
property is not necessarily a defect of our algorithm Bocsg. To smoothly learn a
complex concept, to begin with a simpler portion of it is a better strategy than
the opposite in general.

5 Learning Very Simple Grammars

Yokomori’s Algorithm. Yokomori [6, 9] has shown that the class of vsgs
admits a learning algorithm with the properties Pup and Pcc if we regard |Σ| as a
constant. We begins this section with roughly describing his algorithm and show
that his algorithm also satisfies Pmc−. To make the further discussion concise,
we give slightly different notation and specification for describing his algorithm.
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Though the simplified algorithm given below would be less efficient than the
original from the practical point of view, we still give the same theoretical upper
bound on the running time as the original.

Yokomori introduced “simulation process” for constructing the least consis-
tent vsg for each compatible shape. Let K be a finite language and � be a shape
compatible with K. The least vsg G such that �G = � and K ⊆ L(G) is uniquely
determined (modulo renaming of nonterminals) by simulating derivations of el-
ements of K. Before starting simulation, assume that G = (N�, Σ, P�, S) where

N� = { Xa | a ∈ Σ } ∪ { Za,j | a ∈ Σ, 0 ≤ j ≤ �(a) } ∪ {S},

P� = { Xa → aZa,0 . . . Za,�(a) | a ∈ Σ }.

Then, we merge nonterminals in N� so that G can derive all the elements of K.
Let G = (N, Σ, P, S) and G′ = (N ′, Σ, P ′, S′) be two vsgs. We write G � G′

iff for any a, b ∈ Σ and A ∈ N , whenever A → aα, A → bβ ∈ P for some
α, β ∈ N∗, there is A′ ∈ N ′ such that A′ → aα′, A′ → bβ′ ∈ P ′ for some
α′, β′ ∈ N ′∗. If G � G′ and G′ �� G, then we write G ≺ G′. It is easy to see that
if G1, . . . , Gm are vsgs on Σ such that G1 ≺ G2 ≺ · · · ≺ Gm, then m ≤ |Σ|.

Lemma 8 (Yokomori [6]). For any reduced vsgs G and G′, L(G) ⊆ L(G′)
implies G � G′ and moreover L(G) � L(G′) implies G ≺ G′.

To choose a minimal (with respect to the language) vsg among many candidates,
Yokomori’s original algorithm chooses a vsg that is minimal with respect to the
relation �. Here we propose an even simpler criterion.

Corollary 9. Let G and G′ be reduced vsgs on the same alphabet. If L(G) �

L(G′), then |N | > |N ′|.

The learning algorithm Avsg, which is a slight simplification of Yokomori’s orig-
inal algorithm, for vsgs runs as follows. Let G0 be the previous conjecture (for
the first conjecture, assume G0 = ({S}, ∅, ∅, S)) and K be the given set of
positive examples.

1. If K ⊆ L(G0), then output G0.
2. Otherwise, enumerate all the shapes �1, . . . , �k compatible with K.
3. Construct consistent vsgs G1, . . . , Gk on �1, . . . , �k, respectively, by simulat-

ing derivation of the elements of K.
4. Among G1, . . . , Gk, output any vsg that has the largest number of nonter-

minals.

Theorem 10. The algorithm Avsg identifies vsgs in the limit from positive
data. Moreover, Avsg satisfies Pcc, Pup, Pmc−, if we regard |Σ| as a constant.

Proof. Yokomori has given a proof for this theorem except for the property
Pmc−. Note that Avsg updates its conjecture in O(‖K‖|Σ|) steps for the input
K. We prove the property Pmc−. Let G1, . . . , Gm be the sequence of pairwise
distinct vsgs output by Avsg in this order for the sequence of positive examples
w1, . . . , wn. Let us write Gi ∼ Gj if �Gi = �Gj . Since each �Gi is compatible with
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some non-empty subset of {w1, . . . , wn}, by Lemma 2, we have |G/ ∼ | ≤ l|Σ|

where G = {G1, . . . , Gm} and l = max{|w1|, . . . , |wn|}. Moreover, if Gi ∼ Gj

and i < j, by the procedure of simulation, we have Gi ≺ Gj . Therefore, each
element of G/∼ contains at most |Σ| grammars. We get |G| ≤ |Σ|l|Σ| and thus
the algorithm changes its conjecture at most |Σ|l|Σ| times. ��

Avsg does not satisfy Pmc+. It is easy to see that the language L∗ = a{b, c}∗d
is very simple. We show that for every natural number m, there is a positive
presentation of L∗ on which Avsg can change its conjecture more than m times
until it converges. Let the positive examples w0, . . . , wm, wm+1 ∈ L∗ be given to
Avsg in this order where wi = acibcm−id for i ≤ m and wm+1 = ad. It is easy to
check that for each Kk = {w0, . . . , wk} with 1 ≤ k ≤ m, every vsg constructed
by the simulation procedure of Avsg has at most 3 nonterminals. Therefore, Avsg

may output the vsg Gk with the following rules

S → aXk+1
b Xd, Xb → bXm−k

b , Xb → c, Xd → d,

which indeed has 3 nonterminals. But wk+1 �∈ L(Gk) and thus Avsg has to change
its conjecture. Therefore, the number of mind changes of Avsg can be more than
m until it converges. Moreover, one can give another very simple language by
modifying the above example so that Avsg must change the conjecture more
than m times for any m whichever Avsg chooses among vsgs with the largest
number of nonterminals.

Alternative Algorithm. In the rest of this section, we propose an alternative
learning algorithm Bvsg for vsgs that changes its conjecture at most |Σ| times
(Pmc+). As discussed in Section 2, the property Pmc+ is not powerful enough for
making the property Pup meaningful. Here we introduce another property.

Let L be a class of languages. We say that a finite subset K of a language
L ∈ L is a universal characteristic set2 of L with respect to L iff for any language
L′ ∈ L, K ⊆ L′ implies L ⊆ L′. A learning algorithm satisfies the property Pucs

iff whenever the input includes a universal characteristic set, the algorithm con-
verges to a grammar representing the target language. Note that the notion of
universal characteristic sets does not depend on any particular algorithm differ-
ent from characteristic sets (K in the definition of Pcs, Definition 1). Although
the existence of universal characteristic set is not a necessary condition for iden-
tifiability from positive data, the property Pucs is strong enough to prevent Pitt’s
trick if the target class admits a universal characteristic set for each language.
Here we show that every vsg G indeed admits a computable universal character-
istic set. Let K0 be any finite subset of L(G) in which every a ∈ Σ appears. By
Lemma 2 we have a finite number of shapes compatible with K0. Moreover each
shape has a finite number of vsgs of that shape modulo renaming nonterminals.
Thus we can enumerate all the vsgs G′ on Σ such that K0 ⊆ L(G′). Then we
2 A universal characteristic set is exactly what is called a characteristic sample in

Angluin [11]. To avoid confusion with the notion of characteristic sets by de la
Higuera, we refrain from using the term “characteristic sample” here.
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define KG by adding some wG′ ∈ L(G) − L(G′) to K0 for each G′ such that
K0 ⊆ L(G′) and L(G) � L(G′). Here the inclusion problem for vsgs is decid-
able [13]. Then, the resultant set KG is a universal characteristic set of L(G).
We note that if a learning algorithm with the property Pcc always outputs a
conjecture in the target class (such as Avsg), it also satisfies Pucs.

Now we define the learning algorithm Bvsg for vsgs. It is obtained by replacing
the procedure (4) of Avsg with

4. If there is j ∈ {1, . . . , k} such that L(Gj) ⊆ L(Gi) for all i ∈ {1, . . . , k}, then
output Gj , else output G0,

where G1, . . . , Gk are vsgs constructed by the previous step and G0 is the pre-
vious conjecture.

Theorem 11. The algorithm Bvsg identifies vsgs in the limit from positive
data with the properties Pup, Pmc+, Pucs, where Pup holds if we regard |Σ| as a
constant and Pmc+ holds if we regard |Σ| as a variable.

Proof. Since each vsg admits a universal characteristic set, the algorithm iden-
tifies vsgs in the limit from positive data.

(Pup): The only difference from Avsg is the 4th step. It is known that the in-
clusion of two vsgs constructed on the set K of positive examples is decidable in
O(‖K‖p) for a natural number p [13,8]. It is enough to execute this sub-algorithm
at most 2k ≤ 2‖K‖|Σ|−1 times to decide whether a least vsg with respect to the
language exists. Therefore, the algorithm Bvsg runs in O(‖K‖|Σ|+p) steps.

(Pmc+): Let G1, . . . , Gm be the pairwise distinct vsgs output by the algorithm
in this order. Let Ki be the set of positive examples on which Gi is first output.
Since Gi is the least vsg such that Ki ⊆ L(Gi), for any j ∈ {i, . . . , m}, Ki ⊆
L(Gj) implies L(Gi) ⊆ L(Gj). By the conservativeness of the algorithm, we
have L(Gi) � L(Gi+1). Therefore, L(G1) � L(G2) � · · · � L(Gm) and thus
G1 ≺ · · · ≺ Gm by Lemma 8. We have m ≤ |Σ|.

(Pucs): It is clear by definition. ��

As discussed in Section 2, one can modify the algorithm Bvsg so that it makes
implicit errors of prediction at most O(|Σ|) times, and in that case we lose the
conservativeness in exchange for the consistency.

Although the upper bound on the number of mind changes by Bvsg is much
smaller than the one by Avsg, it is disputable if Bvsg is more efficient than Avsg.
In fact, whenever Bvsg converges to a vsg on a set of positive examples, Avsg

also converges on the same examples, though the converse does not hold.
Nevertheless, the algorithm Bvsg is still worth considering. First, the conver-

gence of the output of Bvsg is actually sufficiently quick by the property Pucs.
Bvsg outputs an inconsistent grammar only when it has insufficient positive ex-
amples to uniquely determine a conjecture. In that case, there is no reason why
the algorithm should output a certain grammar among other equally plausible
grammars that generate incomparable languages.
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Second, the property Pmc+ is a non-trivial property of identification of vsgs in
the limit from positive data. Moreover whenever the conjecture is updated, the
new one generates a larger language than the old one. By this incrementality, one
can modify Bvsg so that it ignores all the positive examples that can be generated
by the current conjecture and constructs the new conjecture from the current
conjecture and examples with which the current conjecture is inconsistent. This
allows one to save the memory space. Avsg does not admit this modification.

Third, Bvsg is very cautious against over-generalization. While the output of
Bvsg may be inconsistent with the given examples, its language is always a subset
of the target language, hence the output grammar generates only “safe” strings,
which are in the target. On the other hand, the output of Avsg may generate a
language incomparable with the target language.

Fourth, one can know from the behavior of Bvsg whether or not the presented
positive examples form a universal characteristic set of a very simple language,
because Bvsg outputs a consistent vsg iff the input is a universal characteristic
set of the conjectured language. Here even an inconsistent output is informative.

6 Conclusions and Discussion

We have discussed possible definitions of polynomial-time learning algorithms
from positive data through presenting two kinds of learning algorithms for each
of very simple grammars and one-counter simple grammars. One is consistent
and conservative, and one is not consistent. Our discussion of the former type
of algorithms augments Yokomori’s original work [6, 9] by revealing a property
of his algorithm for vsgs, while an upper bound on the efficiency of consistent
and conservative learning algorithms for ocsgs is given.

On the other hand, the algorithm Bocsg shows a similarity to the learning al-
gorithm for pattern languages by Lange and Wiehagen [2]. For those algorithms,
there are two kinds of examples, “good” ones and “bad” ones, depending on the
current conjecture. When the new example is bad, the algorithms simply ig-
nore the example, and they update their conjectures only when the example is
good. Ignoring bad examples is the key for overcoming the intractability of the
target class. Concerning this issue, Wiehagen and Zeugmann [14] discuss the
importance of inconsistent strategy for learning from complete data.

The algorithm Bvsg also behaves inconsistently. Bvsg does not run faster than
Avsg and it requires positive examples at least as much as Avsg for convergence.
However, Bvsg shows several virtues as discussed in the previous section. We
would like to emphasize that an inconsistent output can be more reliable than a
consistent output. For some set of positive examples, every consistent grammar
possibly generates a language incomparable with the target language. In that
case, an inconsistent conjecture that surely generates a subset of the target
language might be better in some application.

We also note that the modification from Avsg to Bvsg is applicable to the
related algorithms by Wakatsuki et al. [7] and Yoshinaka [8], because the target
classes of them admit an efficient algorithm for the inclusion problem.
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Concerning the property Pcs, it is known that the class of vsgs cannot satisfy
that property unless |Σ| is regarded as a constant. It remains open how small a
characteristic set of a vsg can be for a learning algorithm.
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Abstract. We consider the problem of learning stochastic tree lan-
guages, i.e. probability distributions over a set of trees T (F), from a
sample of trees independently drawn according to an unknown target
P . We consider the case where the target is a rational stochastic tree
language, i.e. it can be computed by a rational tree series or, equiva-
lently, by a multiplicity tree automaton. In this paper, we provide two
contributions. First, we show that rational tree series admit a canonical
representation with parameters that can be efficiently estimated from
samples. Then, we give an inference algorithm that identifies the class of
rational stochastic tree languages in the limit with probability one.

1 Introduction

In this paper, we stand in the field of probabilistic grammatical inference and
we focus on the learning of stochastic tree languages. A stochastic tree language
is a probability distribution over the set of trees T (F) built on a ranked finite
alphabet F . Given a sample of trees independently drawn according to an un-
known stochastic language P , we aim at finding an estimate of P in a given class
of models such as probabilistic tree automata. Carrasco et al. have proposed to
learn deterministic stochastic tree automata [1]. Specific work for probabilistic
k-testable tree languages was presented in [2] and for learning stochastic gram-
mars in [3]. However, to our knowledge, no efficient inference algorithm capable
of identifying the whole class of probabilistic tree automata is known.

Here, we can make a parallel with results on stochastic languages on strings.
Indeed, there exists no efficient algorithm capable of identifying the whole class
of probabilistic automata on strings either and the main reason is that we can-
not define a canonical structure for these models. Most former results deal with
specific subclasses of the class of probabilistic automata. Recently, it has been
proposed to consider a larger class of models: the class Srat

R
of rational stochastic

languages [4]. In the field of strings, a rational stochastic language is a stochastic
language that can be computed by a multiplicity automaton, whose parame-
ters may be positive or negative. Rational stochastic languages have a minimal
canonical representation while such canonical representations do not exist for
probabilistic automata. And it has been shown that the class of rational stochas-
tic languages can be inferred in the limit with probability 1 [5,6]. The aim of
this paper is to study an extension of these results to the case of trees.

M. Hutter, R.A. Servedio, and E. Takimoto (Eds.): ALT 2007, LNAI 4754, pp. 242–256, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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A tree series is a mapping from T (F) to R. Rational tree series have been
studied in [7,8]. As far as we know, very few approaches have focused on the
learning of tree series but we can mention two papers that stand in a variant
of the MAT learning model of Angluin: [9] in a general case and [10] in a de-
terministic case. But, to the best of our knowledge, this is the first attempt for
learning rational stochastic tree languages. Note that the adaptation to trees
is not trivial. Prefixes and suffixes of a string are also strings. The equivalent
notions for trees are subtrees and contexts (a context c is a tree one leaf of which
acts as a variable, so that substituting a tree t to the variable yields a new tree
c[t]), which are not similar objects. In the case of words, it can be shown that
any rational series r has a canonical representation that can be built on derived
rational series of the form u̇r such that u̇r(v) = r(uv) for any string v. The
corresponding notion for trees could be rational series of the form ċr where c is
a context, which associates r(c[t]) with each tree t. However, it seems impossible
to build a canonical representation on them and we need to consider much more
sophisticated objects. Let R〈〈T (F)〉〉 be the vector space composed of all series
defined on T (F), let r ∈ T (F) be a tree rational series, let W be the subspace
of R〈〈T (F)〉〉 spanned by all the series of the form ċr.

The first result of this paper shows that a canonical representation of r can be
defined on the dual vector space W ∗ composed of all the linear forms defined on
W . We show that given an order on T (F), a canonical basis {t1, . . . , tn} - whose
elements naturally correspond to trees - can be defined for W ∗. This point is
important from a machine learning perspective. We show that such a basis can
be extracted from any sufficiently large sample of trees drawn according to the
target. This leads us to the inference part of our paper.

Our second contribution consists in proposing an inference algorithm which
identifies in the limit any rational stochastic tree language with probability one.
We show that there exists a sample size above which, the structure of the canon-
ical representation is identified with probability one. Moreover, we show that
the parameters output by the algorithm converge to the true parameters at a
convergence rate equal to O(|S|γ) for any γ ∈] − 1/2, 0[.

The paper is organized as follows. In Section 2, we introduce some prelimi-
naries on tree series. The canonical linear representation for rational tree series
is presented in Section 3. We propose our inference algorithm in Section 4. We
conclude by a discussion and a description of future work in Section 5.

2 Preliminaries

2.1 Formal Power Series on Trees

See [11] for references on trees. Let F = F0 ∪F1 ∪ · · · ∪Fp be a ranked alphabet
where the elements in Fm are the function symbols of arity m. Let T (F) be the
set of all the trees that can be constructed from F . Let us define the height of a
tree t by: height(t) = 0 if t ∈ F0 and height(t) = 1 + Max{height(ti)|i = 1..m}
if t = f(t1, . . . , tm). For any integer n, let us define T n(F) (resp. T≤n(F)) the
set of trees whose height is equal to n (resp. ≤ n).
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Let $ be a zero arity function symbol not in F0. A context is an element of
T (F ∪ {$}) such that the symbol $ appears exactly once. We denote by C(F)
the set of all the contexts that can be defined over F . Let t be a tree and let c
be a context, c[t] denotes the tree obtained by substituting the symbol $ in the
context c by the tree t. A subset A of T (F) is prefixial if for any c ∈ C(F) and
any t ∈ T (F), c[t] ∈ A ⇒ t ∈ A.

A formal power tree series on T (F) is a mapping r : T (F) → R. The set of
all formal power series on T (F) is denoted by R〈〈T (F)〉〉. It is a vector space,
when provided with addition and multiplication by a scalar.

Let V be a finite dimensional vector space over R. We denote by L(V p; V )
the set of p-linear mappings from V p to V . Let L = ∪p≥0L(V p; V ). We denote
by V ∗ the dual space of V , i.e. the vector space composed of all the linear forms
defined on V .

Definition 1. A linear representation of T (F) is a couple (V, μ), where V is
a finite dimensional vector space over R, and where μ : F → L maps Fp into
L(V p; V ) for each p ≥ 0.

Thus for each f ∈ Fp, μ(f) : V p → V is p-linear. It can easily be shown that μ
extends uniquely to a morphism μ : T (F) → V by the formula

μ(f(t1, . . . , tp)) = μ(f)(μ(t1), . . . , μ(tp)). (1)

The μ function can be extended to work over contexts. Let μ : C(F) → L(V ; V )
be inductively by μ($)(v) = v and μ(f(t1, . . . , ti−1, c, ti+1, . . . , tn))(v) =
μ(f)(μ(t1), . . . , μ(ti−1), μ(c)(v), μ(ti+1), . . . , μ(tn)).

It can be shown that for any context c and any term t, μ(c)(μ(t)) = μ(c[t]).
Let (V, μ) be a linear representation of T (F) and let VT (F) be the vector

subspace of V spanned by μ(T (F)). It can be shown that (VT (F), μ) is also a
linear representation of T (F). Let A be a prefixial subset of T (F) and let VA

be the subspace of V spanned by μ(A). Suppose that for any integer m, any
f ∈ Fm and any t1, . . . , tm ∈ A, μ(f(t1, . . . , tm)) ∈ VA. Then, VA = VT (F). As
a consequence, a basis of VT (F) can be extracted from μ(A). Therefore, given a
linear representation (V, μ) of T (F), a basis of VT (F) can be computed within
polynomial time.

Definition 2. Let r be a formal series over T (F), r is a recognizable tree series
if there exists a triple (V, μ, λ), where (V, μ) is a linear representation of T (F),
and λ : V → R is a linear form, such that r(t) = λ(μ(t)) for all t in T (F).

We say that (V, μ, λ) is trimmed if (i) V = VT (F) and (ii) ∀v ∈ V \ {0}, ∃c ∈
C(F), λμ(c)(v) �= 0.

Rational tree series have been studied in [7]. It has been shown that the
notions of recognizable tree series and rational tree series coincide. From now
on, we shall refer to them by using the term of rational tree series. Note also
that rational series on strings can be seen as particular cases of rational series
on trees and hence, counterexamples designed in the first field can be directly
exported in the second one.



Learning Rational Stochastic Tree Languages 245

Example 1. Let F = {a, b, g(·), f(·, ·)}, let V = R
2 and let (e1, e2) be a basis of

V . We define μ, λ and r by:

μ(a) = 2e1/3, μ(b) = e2/2, μ(g)(e1) = e2/2, μ(g)(e2) = 0,

μ(f)(ei, ej) =
{

e1/3 if i = 1 and j = 2
0 otherwise

and
λ(e1) = 1, λ(e2) = 0 and r(t) = λμ(t) for any term t.

We have μ(f(a, b))=μ(f)(μ(a), μ(b))=e1/9 and μ(f(a, g(a))) = μ(f)(μ(a),
μ(g)(μ(a))) = 2e1/27.

Hence, r(a) = 2/3, r(b) = 0, r(f(a, b)) = 1/9, r(f(a, g(a))) = 2/27.

Definition 3. A multiplicity tree automaton (MA) over F is a tuple A =
(Q, F , τ, δ) where Q is a set of states, τ is a mapping from Q to R and δ is
a mapping from ∪m≥0Fm × Qm × Q to R.

A multiplicity automaton is a device that can be used to compute tree series.
They can be interpreted in a bottom-up or a top-down way, since δ(f, q1, . . . , qm,
q) = w can be rewritten as a bottom-up rule or a top-down rule:

f(q1, . . . , qm) w→ q or q
w→ f(q1, . . . , qm).

A probabilistic tree automaton (PA) is an MA A = (Q, F , τ, δ) which satisfies
the following conditions:

– δ and τ take their values in [0, 1],
–

∑
q∈Q τ(q) = 1,

– for any q ∈ Q,
∑

f(q1,...,qm)
w→q

w = 1.

Multiplicity automata and linear representations are two equivalent ways to
represent rational series. For example, let (V, μ, λ) be a linear representation of
the formal series r defined on T (F) and let B = (e1, . . . , en) be a basis of V .
A multiplicity automaton A = (Q, F , λ, δ) can be associated with (V, μ, λ, B) as
follows:

– Q = {e1, . . . , en},
– δ(f, ei1 , . . . , eim , ej)=wj for any f ∈Fm where μ(f)(ei1 , . . . , eim) =

∑
j wjej .

Conversely, an equivalent linear representation can be associated with any mul-
tiplicity automaton.

Example 2. It can easily be shown that the linear representation described in
Example 1 is equivalent to the probabilistic automaton defined by: Q = {e1, e2},
τ(e1) = 1, τ(e2) = 0 and

δ = {e1
2/3→ a, e1

1/3→ f(e1, e2), e2
1/2→ b, e2

1/2→ g(e1)}.
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2.2 Rational Stochastic Tree Languages

Definition 4. A stochastic tree language over T (F) is a tree series r ∈ K〈〈T
(F)〉〉 such that for any t ∈ T (F), 0 ≤ r(t) ≤ 1 and

∑
t∈T (F) r(t) = 1.

Therefore, a rational stochastic tree language is a stochastic tree language which
admits a linear representation. Stochastic languages that can be computed by a
probabilistic automaton are rational. However, the converse is false: there exists
a rational stochastic tree language that cannot be computed by a probabilistic
automaton [4]. Moreover, it can be shown that the rational series computed by
a PA is not always a stochastic language. For example, it can easily be shown
that the PA defined by Q = {q}, τ(q) = 1, δ = {q

α→ a, q
1−α→ f(q, q)} defines a

stochastic language iff α ≥ 1/2. When α < 1/2,
∑

t∈T (F) r(t) < 1 [12].
Let P be a stochastic tree language over T (F). We consider infinite samples

S composed of trees independently drawn according to P . For any integer m, let
Sm be the sample composed of the m first elements of S. We denote by PSm the
empirical distribution on T (F) associated with Sm. Let A = (Ai)i∈I be a family
of subsets of T (F). It can be shown [13,14] that for any confidence parameter δ
and any integer m, with a probability greater than 1 − δ, for any i ∈ I,

|PSm(Ai) − P (Ai)| ≤ C

√
d−log δ

4
m · (2)

where d is the Vapnik-Chervonenkis dimension of A and C is a universal con-
stant. In particular, with a probability greater than 1 − δ, for any t ∈ T (F),

|PSm(t) − P (t)| ≤ C

√
1−log δ

4
m · (3)

Let Ψ(d, ε, δ) = C2

ε2 (d − log δ
4 ). One can easily verify that if m ≥ Ψ(d, ε, δ), with

a probability greater than 1 − δ, |PSm(Ai) − P (Ai)| ≤ ε for any index i.
Borel-Cantelli Lemma states that if (Ak)k∈N is a family of events such that∑
k P (Ak) < ∞, the probability that a finite number of events Ak occur is equal

to 1.
Check that for any α such that −1/2 < α < 0 and any β < −1, if we define

εk = kα and δk = kβ , then there exists K such that for all k ≥ K, we have
k ≥ Ψ(1, εk, δk). For such choices of α and β, we have limk→∞ εk = 0 and∑

k≥1 δk < ∞. Therefore, from Borel-Cantelli Lemma, it can easily be shown
that with probability 1, there exists K such that for any k ≥ K, for any t ∈ T (F),

|PSk
(t) − P (t)| ≤ εk· (4)

3 A Canonical Linear Representation for Rational Tree
Series

The main goal of the paper is to show that any rational stochastic tree language
P can be inferred in the limit from an infinite sample drawn according to P with
probability 1. The first step is to define the canonical linear representation of a
rational tree series r, whose components only depend on r.
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3.1 Defining the Canonical Representation

Let c ∈ C(F). We define the (linear) mapping ċ : R〈〈T (F)〉〉 → R〈〈T (F)〉〉 by:

ċ(r)(t) = r(c[t]).

Lemma 1. Let (V, μ, λ) be a linear representation of the rational series r. For
any context c, ċr is rational and (V, μ(c) ◦ μ, λ) is a linear representation of ċr.

Proof. Indeed, for any term t, ċr(t) = r(c[t]) = λμ(c[t]) = λ(μ(c) ◦ μ)(t). ��

Let r be a formal power series on T (F). Let us denote by Wr the vector subspace
of R〈〈T (F)〉〉 spanned by {ċr|c ∈ C(F)}.

Lemma 2. If r is rational, then the dimension of Wr is finite.

Proof. Let (V, μ, λ) be a linear representation of r. For any context c, λμ(c) ∈ V ∗.
Since the dimension of V ∗ is finite, there exist c1, . . . cn s. t. for any c ∈ C(F),
there exists α1, . . . , αn s.t. λμ(c) =

∑
i αiλμ(ci). Check that {ċ1r, . . . , ċnr} spans

Wr. ��

Let W ∗
r be the dual space of Wr, i.e. the set of all linear forms defined over Wr.

For any t ∈ T (F), let t ∈ W ∗
r be defined by: ∀s ∈ Wr , t(s) = s(t).

Lemma 3. Let f(u1, . . . , ui, . . . , up), t1, . . . , tn ∈ T (F) and suppose that
ui =

∑n
j=1 αjtj for some index i. Then, f(u1, . . . , ui, . . . , up) =∑n

j=1 αjf(u1, . . . , tj , . . . , up).

Proof. Let ci be the context f(u1, . . . , $, . . . , un) where $ is at the i-th position.
For any s ∈ Wr,

f(u1, . . . , ui, . . . , up)(s)=ui(ċis)=
n∑

j=1

αjtj(ċis)=
n∑

j=1

αjf(u1, . . . , tj, . . . , up)(s).��

Suppose that the dimension of Wr is finite and let {c−1
1 r, . . . , c−1

n r} be a basis
of Wr. One can show that there exists n terms t1, . . . , tn such that the rank of
the matrix (c−1

i r(tj))1≤i,j≤n is n. Therefore, (t1, . . . , tn) is a basis of W ∗
r .

Let r be a rational series. We know that the dimension of Wr is finite. Let
t1, . . . , tn be n terms such that (t1, . . . , tn) is a basis of W ∗

r . We define a linear
representation (W ∗

r , ν, τ) of r as follows:

– for any f∈Fp, define ν(f)∈L((W ∗
r )p; W ∗

r ) by ν(f)(ti1 , . . . , tip)=f(ti1 , . . . , tip).
– τ ∈ (W ∗

r )∗ = Wr by τ(t) = r(t).

Lemma 4. For any term t ∈ T (F), ν(t) = t.

Proof. Let t = f(s1, . . . , sp) ∈ T (F) and let si =
∑n

j=1 αj
i ti. Using the previous

lemma, we have

ν(f)(s1, . . . , sp) =
∑

j1,...,jp

αj1
1 . . . αjp

p f(tj1 , . . . , tjp) = f(s1, . . . , sp)



248 F. Denis and A. Habrard

Remark that ν and τ do not depend on any basis chosen for W ∗
r .

Theorem 1. (W ∗
r , ν, τ) is a trimmed linear representation of r which is called

the canonical linear representation of r.

Proof. For any term t, τ(ν(t)) = τ(t) = r(t). Therefore, (W ∗
r , ν, τ) is a linear

representation of r. By construction, ν(T (F)) spans W ∗
r . Now, let w ∈ W ∗

r \ {0}
and let {t1, . . . , tn} be a basis of W ∗

r . There exist α1, . . . , αn not all zero s.t.
w =

∑
αiti. Since {t1, . . . , tn} is linearly independent, there exists a context c

such that
∑

αiti(c) = τν(c)(w) �= 0. Therefore, (W ∗
r , ν, τ) is trimmed. ��

Given a total order ≤ on T (F), there exists a unique subset B of ν(T (F)) which
is a basis of W ∗

r and such that for any s ∈ T (F), s ∈ B or {s} ∪ {t ∈ B|t ≤ s}
is linearly dependent. We say that B is the canonical basis of W ∗

r (wrt ≤).

3.2 Building the Canonical Representation

Given an n-dimensional trimmed linear representation (V, μ, λ) for r, it is pos-
sible to build the canonical representation of r in time polynomial in np where
p is the maximal arity of symbols in F . The proof of this result relies on the
following lemma:

Lemma 5. Let (V, μ, λ) be an n-dimensional trimmed linear representation (V,
μ, λ) for r and let t1, . . . , tm ∈ T (F). Then, {t1, . . . , tm} is linearly independent
iff {μ(t1), . . . , μ(tm)} is linearly independent.

Proof. Suppose that {μ(t1), . . . , μ(tm)} is linearly independent in V and let
α1, . . . , αm be such that

∑
αm

i=1ti = 0. For any context c,
∑

i αiti(c) =
∑

i r(c[ti])
= λμ(c)(

∑
i αiμ(ti)) = 0. Therefore,

∑
i αiμ(ti) = 0 since (V, μ, λ) is trimmed

and αi = 0 for i = 1, . . . , n since {μ(t1), . . . , μ(tm)} is linearly independent:
hence, {t1, . . . , tm} is linearly independent.

Suppose that {μ(t1), . . . , μ(tm)} is linearly dependent and let
∑

i αm
i=1μ(ti) =

0 where the αi are not all zero. For any context c,
∑

i

αiti(c) =
∑

i

αir(c[ti]) =
∑

i

αiλμ(c[ti]) = λμ(c)(
∑

i

αiμ(ti)) = 0.

Therefore,
∑m

i=1 αiti = 0. ��

Proposition 1. Given an n-dimensional trimmed linear representation (V, μ, λ)
for the rational series r, a basis for W ∗

r can be computed in time polynomial in
np.

Proof. One can verify that Algorithm 1 computes a basis of W ∗
r . ��

One can remark that the linear representation is only used to check whether B ∪
f(t1, . . . , tp) is linearly independent. Therefore, the linear representation can be
replaced by an oracle that says whether B ∪f(t1, . . . , tp) is linearly independent.
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Data : A trimmed linear representation (V, μ, λ) for r

Result : A basis B of W ∗
r

begin
B ← ∅; is a basis ← False;
while not is a basis do

is a basis ← True;
for every f ∈ F do

let p = arity(f);
for t1, . . . , tp ∈ B do

if B ∪ f(t1, . . . , tp) is linearly independent then
B = B ∪ f(t1, . . . , tp); is a basis ← False;

end

Algorithm 1. Building a canonical linear representation of r

Such an oracle could be achieved, in a variant of the MAT learning model of
Angluin, by using a membership oracle which would compute r(t) for any tree
t and an equivalence oracle which would say whether the current representation
computes r, and would provide a counterexample (t, r(t)) otherwise. See [9,10]
for related work.

Example 3. Let us consider the previous example.

– a �= 0 since a($) = 2/3.
– {a, b} is linearly independent since a(f(a, $)) = 0 and b(f(a, $)) = 1/9.
– We have f(a, a) = g(b) = f(b, a) = f(b, b) = 0.
– We have also g(a) = 2b/3 and f(a, b) = a/6.

Therefore, {a, b} is a basis of the canonical linear representation of r.

4 Inference of Rational Tree Series in the Limit

In this section, we show how to identify in the limit a canonical linear represen-
tation of a rational stochastic tree language P from an infinite sample S of trees
independently drawn according to P .

Let (W ∗, ν, τ) be the canonical linear representation of the target. Given a
total order ≤ on T (F) satisfying height(t) < height(t′) ⇒ t ≤ t′, the aim of the
algorithm is to identify the canonical basis B = {t1, . . . , tn} of W ∗ associated
with ≤. Let tmax be the maximal element of {t1, . . . , tn}. Let S be an infinite
sample independently drawn according to P and let Sm be the sample composed
of the m first elements of S. We have to show that with probability one, there
exists an integer N such that for any m ≥ N , the following properties can be
identified from Sm:

– B = {t1, . . . , tn} is linearly independent,
– for any t ≤ tmax, B ∪ {t} is linearly dependent,
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– for any f ∈ F and any 1 ≤ i1, . . . , ip ≤ n, B ∪ {f(ti1 , . . . , tip)} is linearly
dependent, where p is the arity of f .

Given these relations, a linear representation (W ∗, νm, τm) can be computed.
Then, we have to show that the (multi-) linear mappings νm(f) for any f ∈ F
and τm converge to the correct ones.

Since we are working on finite samples Sm, we cannot consider exact linear de-
pendencies. Let T be a finite subset of T (F), let Sm be a finite sample composed
of m trees independently drawn from the target, let t ∈ T (F), let {xs|s ∈ T } be
a set of variables and let ε > 0. We denote by I(T, t, Sm, ε) the following set of
inequalities:

I(T, t, Sm, ε) = {|t(ċPS) −
∑
s∈T

xss(ċPS)| ≤ ε|c ∈ C(Sm)}

where PS is the empirical distribution on Sm and where C(S) = {c ∈ C(F)|∃t ∈
T (F) s.t. c[t] ∈ Sm}.

Let S be an infinite sample of the target P . Suppose that {t} ∪ {s|s ∈ T } is
linearly independent. We show that, with probability 1, there exists ε > 0 and a
sample size from which I(T, t, Sm, ε) has no solution.

Lemma 6. Let P be a stochastic language and let {t0, t1, . . . , tn} be a set of trees
such that {t0, t1, . . . , tn} is linearly independent. Then, with probability one, for
any infinite sample S of P , there exists a positive number ε and an integer M
such that for every m ≥ M , I({t1, . . . , tn}, t0, Sm, ε) has no solution.

Proof. Let S be an infinite sample of P . Suppose that for every ε > 0 and every
integer M , there exists m ≥ M such that I({t1, . . . , tn}, t0, Sm, ε) has a solution.
Then, for any integer k, there exists mk ≥ k such that I({t1, . . . , tn}, t0, Smk

, 1/k)
has a solution (α1,k, . . . , αn,k).

Let ρk = Max{1, |α1,k|, . . . , |αn,k|}, γ0,k = 1/ρk and γi,k = −αi,k/ρk for
1 ≤ i ≤ n. For every k, Max{|γi,k| : 0 ≤ i ≤ n} = 1. Check that for any context

c: ∀k ≥ 0,
∣∣∣∑n

i=0 γi,kti(ċPSmk
)
∣∣∣ ≤ 1

ρkk ≤ 1
k .

There exists a subsequence (α1,φ(k), . . . , αn,φ(k)) of (α1,k, . . . , αn,k) such that
(γ0,φ(k), . . . , γn,φ(k)) converges to (γ0, . . . , γn). We show below that we should
have

∑n
i=0 γiti(ċP ) = 0 for every context c, which is contradictory with the

independence assumption since Max{γi : 0 ≤ i ≤ n} = 1 and hence, some γi is
not zero.

Let c ∈ C(F). With probability 1, there exists an integer k0 such that c ∈
C(Smk

) for any k ≥ k0. For such a k, we can write
γiti(ċP ) = (γiti(ċP )−γiti(ċPSmk

))+(γi −γi,φ(k))ti(ċPSmk
)+γi,φ(k)ti(ċPSmk

)
and therefore

∣∣∑n
i=0 γiti(ċP )

∣∣ ≤
∑n

i=0 |ti(ċP − ċPSmk
)| +

∑n
i=0 |γi − γi,φ(k)| + 1

k
which converges to 0 when k tends to infinity. ��

Let S be an infinite sample of the target P . Suppose that t =
∑

s∈T αss. We
show that, with probability 1, for any γ ∈] − 1/2, 0[, there exists a sample size
M from which, I(T, t, Sm, mγ) has a solution for any m ≥ M .
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Lemma 7. Let P be a stochastic language and let t0, t1, . . . , tn be a set of trees
such that there exist α1, . . . , αn ∈ R such that t0 =

∑n
i=1 αiti. Then, for any

γ ∈] − 1/2, 0[, with probability one, for any infinite sample S of P , there exists
K s.t. I({t1, . . . , tn}, t0, Sk, kγ) has a solution for every k ≥ K.

Proof. Let S an infinite sample of P . Let α0 = 1 and let R = Max{|αi| : 0 ≤
i ≤ n}. With probability one, there exists K1 s.t. ∀k ≥ K1, k ≥ Ψ(1, [kγ(n +
1)R]−1, [(n + 1)k2]−1) (see definition of Ψ in Section 2). Let k ≥ K1, for any
c ∈ C(F),

|t0(ċPSk
) −

n∑
i=1

αiti(ċPSk
)| ≤ |t0(ċPSk

) − t0(ċP )| +
n∑

i=1

|αi||ti(ċPSk
) − ti(ċP )|.

From the definition of Ψ , with probability greater than 1 − 1
k2 , for any i =

0, . . . , n and any context c, |ti(ċPSk
) − ti(ċP )| ≤ [k−γ(n + 1)R]−1 and therefore

|t0(ċPSk
) −

∑n
i=1 αiti(ċPSk

)| ≤ kγ . For any integer k ≥ K1, let Ek be the event:
|t0(ċPSk

)−
∑n

i=1 αiti(ċPSk
)| > kγ . Since Pr(Ek) < 1/k2, from the Borel-Cantelli

Lemma, the probability that a finite number of Ek occurs is 1.
Therefore, with probability 1, there exists an integer K such that for any

k ≥ K, I({t1, . . . , tn}, t0, Sk, kγ) has a solution. ��

In the next lemma, we focus on the convergence of the parameters found when
resolving an inequation system.

Lemma 8. Let P ∈ S(T (F)), let t0, t1, . . . , tn such that {t1, . . . , tn} is linearly
independent and let α1, . . . , αn ∈ R be such that t0 =

∑n
i=1 αiti. Then, for any

γ ∈]−1/2, 0[, with probability one, for any infinite sample S of P , there exists an
integer K such that ∀k ≥ K, any solution α̂1, . . . , α̂n of I({t1, . . . , tn}, t0, Sk, kγ)
satisfies |α̂i − αi| < O(kγ) for 1 ≤ i ≤ n.

Proof. Let c1, . . . , cn ∈ C(F) be such that the square matrix M defined by
M [i, j] = tj(ċiP ) for 1 ≤ i, j ≤ n is invertible. Let A = (α1, . . . , αn)t, U =
(t0(ċ1P ), . . . , t0(ċnP ))t. We have M × A = U . Let S be an infinite sample of
P , let k ∈ N and let α̂1, . . . , α̂n be a solution of I({t1, . . . , tn}, t0, Sk, kγ). Let
Mk be the square matrix defined by Mk[i, j] = tj(ċiPSk

) for 1 ≤ i, j ≤ n, let
Ak = (α̂1, . . . , α̂n)t and Uk = (t0(ċ1PSk

), . . . , t0(ċnPSk
))t. We have

‖MkAk − Uk‖2 =
n∑

i=1

[t0(ċiPSk
) −

n∑
j=1

α̂jtj(ċiPSk
)]2 ≤ nk2γ .

Check that A − Ak = M−1(MA − U + U − Uk + Uk − MkAk + MkAk − MAk)
and therefore, for any 1 ≤ i ≤ n

|αi − α̂i| ≤ ‖A − Ak‖ ≤ ‖M−1‖(‖U0 − Uk‖ + n1/2kγ + ‖Mk − M‖‖Ak‖).

Now, by using Equation 4 and Borel-Cantelli Lemma as in the proof of Lemma 7,
with probability 1, there exists K such that for all k ≥ K, ‖U0 − Uk‖ < O(kγ)
and ‖Mk − M‖ < O(kγ). Therefore, for all k ≥ K, any solution α̂1, . . . , α̂n of
I({t1, . . . , tn}, t0, Sk, kγ) satisfies |α̂i − αi| < O(kγ) for 1 ≤ i ≤ n. ��
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Data : S a finite sample of k trees, γ ∈] − 1/2, 0[

Result : a linear representation (V, λ, μ)

begin
a0 ← min(F0 ∩ Subtrees(S));
B ← {a0}; μ(a0) ← a0; λa0 ← Ps(a0);
FS ←

⋃
f∈Fp,p≥0{f(tj1 , . . . , tjp)|tij ∈ B}; FS ← FS\{a0};

while FS �= ∅ do
t ← min(FS); FS ← FS\{t};
if I(B, t, S, kγ) has no solution then

B ← B ∪ {t}; μ(t) ← t; λt ← PS(t);
FS ← FS

⋃
f∈Fp,p≥1{f(tj1 , . . . , tjp )|tji ∈ B};

else
Let (αti)ti∈B a solution of I ; μ(t) ←

∑
ti∈B αtiti;

end

Algorithm 2. Learning algorithm Algo(S,γ)

The learning algorithm is presented in Algorithm 2 and works as follows. We sup-
pose that a total order is defined over T (F) such that height(t) < height(t′) ⇒
t ≤ t′. To begin with, we extract the first constant symbol a0 of the learning
sample and we put it in the basis set B. We define the frontier set (FS) to
be composed of all the trees of the form f(a0, . . . , a0). Note that FS contains
all the constant symbols different from a0. Then, the algorithm processes the
frontier set while it is not empty. For each tree t in this set, we check if it can
approximately be expressed according to a linear combination of the elements of
the current basis. If the answer is no, we add t to the basis and we enlarge the
frontier set by adding all the trees of the form f(t1, . . . , tm) where every ti ∈ B.
Otherwise, we use the linear relation obtained from the inequation system to
complete the definition of μ.

We can now present the theorem of convergence in the limit.

Theorem 2. Let P be a rational stochastic tree language defined on T (F), let
(V, μ, λ) be the canonical linear representation of P , let B = {t1, . . . , tn} the
canonical basis of V (associated with some known total order on T (F)) and
let γ ∈] − 1/2, 0[. Then, with probability one, for any infinite sample S of P ,
there exists an integer K such that for any k ≥ K, Algo(Sk, γ) identifies B.
Moreover, let (V, μk, λk) be the linear representation output by the algorithm.
There exists a constant C such that |μk(f)(ti1 , . . . , tin) − μ(f)(ti1 , . . . , tin)| ≤
Ckγ and |λk(ti) − λ(ti)| ≤ Ckγ for any f ∈ F and any elements ti, tij of B.

Proof. Lemmas 6 and 7 prove that the basis B will be identified from some step
with probability one. Lemma 8 can then be used to prove the last part of the
theorem. ��
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When P is a rational stochastic tree language which takes its values in the set of
rational numbers Q, the algorithm can be completed to exactly identify it. The
proof is based on the representation of real numbers by continuous fractions. See
[15] for a survey on continuous fractions and [16] for a similar application.

Let (εn) be a sequence of non negative real numbers which converges to 0, let
x ∈ Q, let (yn) be a sequence of elements of Q such that |x− yn| ≤ εn for all but
finitely many n. It can be shown that there exists an integer N such that, for any
n ≥ N , x is the unique rational number p

q which satisfies
∣∣∣yn − p

q

∣∣∣ ≤ εn ≤ 1
q2 .

Moreover, the unique solution of these inequalities can be computed from yn.
Let P be a rational stochastic tree language which takes its values in Q,

let γ ∈] − 1/2, 0[, let S be an infinite sample of P and let (V, μk, λk) the lin-
ear representation output by the algorithm on input (Sk, γ). Let (V, μ′

k, λ′
k)

be the representation derived from (V, μk, λk) by replacing every parameter
αk = μk(f(ti1 , . . . , tin)) or αk = λk(ti) with a solution p

q of
∣∣∣αk − p

q

∣∣∣ ≤ kγ/2 ≤ 1
q2

and let Algo′ be the corresponding algorithm.

Theorem 3. Let P be a rational stochastic tree language which takes its values
in Q, let γ ∈] − 1/2, 0[, and let (V, μ, λ) be its canonical linear representation.
Then, with probability one, for any infinite sample S of P , there exists an integer
K such that ∀k ≥ K, Algo′(Sk, γ) returns (V, μ, λ).

Proof. From the previous theorem, for every parameter α of (V, μ, λ), the corre-
sponding parameter αk in (V, μk, λk) satisfies |α − αk| ≤ Ckγ for some constant
C, from some step k, with probability one. Therefore, if k is sufficiently large,
we have |α − αk| ≤ kγ/2 and there exists an integer K such that α = p/q is the
unique solution of

∣∣∣α − p
q

∣∣∣ ≤ kγ/2 ≤ 1
q2 . Therefore, the parameter corresponding

to α in the linear representation output by Algo′(Sk, γ) is α itself. ��

Example 4. To illustrate the principle of our algorithm. Consider the following
learning sample made up of 20 trees (the number of occurrences of each term is
indicated inside brackets):

{a[13], f(a, b)[4], f(a, g(a))[1], f(a, g(f(a, g(a))))[1], f(f(f(a, g(a)), b), b)[1]}.

In a first step the algorithm puts a in the basis and sets μ(a) = a.
Next, the algorithm considers the constant symbol b. To check if b should be-

long to the basis, the algorithm constructs a set of inequations with the contexts
definable in the learning set. For sake of simplicity, we will not consider all the
contexts, but only 3 of them c0 = $, c1 = f($, b), c2 = f(a, $). We obtain the
following inequation system:

|b(ċ0pS) − Xaa(ċ0pS)| = |pS(c0[b]) − XapS(c0[a])| = |0 − Xa
13
20 | ≤ ε

|b(ċ1pS) − Xaa(ċ1pS)| = |pS(c1[b]) − XapS(c1[a])| = | 4
20 − Xa0| ≤ ε

|b(ċ2pS) − Xaa(ċ2pS)| = |pS(c2[b]) − XapS(c2[a])| = |0 − Xa
4
20 | ≤ ε

If we set ε to 0.1, the systems admits no solution and then b is added to the
basis with λb = 0.
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The algorithm examines the terms f(a, a), g(a), f(a, b), f(b, a), f(b, b), g(b).
Since, the values of pS according to the 3 contexts is null for f(a, a) f(b, a),
f(b, b) and g(b) we do not show the inequation systems.

For g(a) the system obtained is:

|g(a)(ċ0pS) − Xaa(ċ0pS) − Xbb(ċ0pS)| = |0 − Xa
13
20 − Xa0| ≤ ε

|g(a)(ċ1pS) − Xaa(ċ1pS) − Xbb(ċ1pS)| = |0 − Xa
4
20 − Xb| ≤ ε

|g(a)(ċ2pS) − Xaa(ċ2pS) − Xbb(ċ2pS)| = | 1
20 − Xa0 − Xb

4
20 | ≤ ε

Xa = 0 and Xb = 1
4 is a solution of the system, then the algorithm sets μ(g)(a) =

1
4b.

For f(a, b), the inequation system is:

|f(a, b)(ċ0pS) − Xaa(ċ0pS) − Xbb(ċ0pS)| = | 4
20 − Xa

13
20 − Xa0| ≤ ε

|f(a, b)(ċ1pS) − Xaa(ċ1pS) − Xbb(ċ1pS)| = |0 − Xa
4
20 − Xb0| ≤ ε

|f(a, b)(ċ2pS) − Xaa(ċ2pS) − Xbb(ċ2pS)| = |0 − Xa0 − Xb
4
20 | ≤ ε

Xa = 4
13 and Xb = 0 is a solution of the system, then the algorithm sets

μ(f)(a, b) = 4
13a. The representation obtained is finally:

μ(a) = a, μ(b) = b, μ(g)(a) = 1
4b, μ(f)(a, b) = 4

13a, λa = 13
20 , λb = 0.

5 Discussion, Future Work and Conclusion

We have proved a theoretical result: rational stochastic tree languages are iden-
tifiable in the limit with probability one. The inference algorithm we use runs
within polynomial time and approximates the parameters of the model with
usual statistical rates of convergence. How can it be used in practical cases? Can
it be improved?

First of all, the algorithm highly relies on an inequation system which aims
at detecting linear combinations

I(T, t, Sn, ε) = {|t(ċPSn) −
∑
s∈T

xss(ċPSn)| ≤ ε|c ∈ C(Sn)}.

However, this system uses contexts which can be poorly represented in current
samples. We can overcome this drawback by using generalized contexts, i.e. con-
texts containing several variables.

Let $0, $1, . . . , $k be zero arity function symbols not in F0. A generalized
context is an element of T (F ∪ {$0, $1, . . . , $k}) such that $0 appears exactly
once and each other new symbol appears at most once. Now, for any stochastic
languages P and any generalized context c, we define

t(ċP ) = ċP (t) =
∑

t1,...,tk∈T (F)

P (c[$0 ← t, $1 ← t1, . . . , $k ← tk]).

We can then replace the inequation system I(T, t, Sn, ε) with

I(T, t, Sn, ε) = {|t(ċPSn) −
∑
s∈T

xss(ċPSn)| ≤ ε|c ∈ Cg
k(Sn)}
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where Cg
k (Sn) is the set of generalized context with k variables occurring in Sn.

If the number of new variables in not bounded, the VC-dimension of the set
of generalized contexts is unbounded. However, it can easily be shown that the
VC-dimension of the set of generalized contexts with k variables is bounded by
2k+1. Therefore, we can adjust the number of variables to the size of the current
learning sample in the inference algorithm in order to avoid overfitting.

Next, the rational series r output by the inference algorithm is not a stochastic
language. Moreover, it may happen that the sum

∑
t∈T (F) r(t) diverges. We con-

jecture that as soon as the size of the learning sample is large enough, with a high
probability, the sum

∑
t∈T (F) r(t) is absolutely convergent, i.e.

∑
t∈T (F) |r(t)|

converges. Moreover, let (V, μ, λ) be the canonical linear representation of a ra-
tional tree series r and let B = {t1, . . . , tn} be a basis of V . For any tree t and
any index i, let αt

i be such that t =
∑n

i=1 αt
iti. We have r(t) =

∑n
i=1 αt

ir(ti).
We also conjecture that

∑
t∈T (F) αt

i is absolutely convergent for any index i so
that, si =

∑
t∈T (F) αt

i is defined without ambiguity. One can show that si can
be efficiently estimated.

Given these properties, it is possible to normalize the linear representation
output by the algorithm in such a way that it computes a series r satisfying∑

t∈T (F) |r(t)| < ∞ and
∑

t∈T (F) r(t) = 1. Let (V, μN , λN ) be defined by

– ∀f ∈ F , [μN (f)(tj1 , . . . , tjp)]i = [μ(f)(tj1 , . . . , tjp)]i · πp
k=1sjk

/si.
– λN (ti) = λ(ti) × si for any element of λN .

It can easily be shown that (V, μN , λN ) computes r and that∑
tj1 ,...,tjp∈B[μN (f(tj1 , . . . , tjp))]i = 1.
We can then adjust the linear form λ by multiplying each of its coordinates

by a constant in order to get a series r which sums to 1.
However, it may happen that the series r takes negative values. We call such

a series, a pseudo-stochastic language. From these languages, we can extract
a probability distribution Pr such that Pr(t) = 0 if r(t) < 0 and otherwise
Pr(t) = btr(t) with a normalization that compensates the loss of the negative
values. We may compute this distribution iteratively when developing a tree.
Suppose that at a given step, we are building a tree with some leaves labeled by
states. We choose to develop a new branch from any of these states. We consider
all the transitions leaving from the considered state grouped by symbols. If all
the possible expansions with a given symbol lead to a negative value, then we
omit this symbol and we renormalized the probabilities of the other expansions.
Note that when r defines a stochastic language, Pr = r since there will be no
negative values. See [6] for a more detailed description of this point, in the case
of pseudo-stochastic languages defined on strings.

To conclude, we have studied in this paper the inference of a stochastic tree
language P from a sample of trees independently drawn according to P . We
have proposed to work in the class of rational stochastic tree languages that
are stochastic languages computed by rational tree series. We have presented
two contributions. First, we have shown that rational tree series admit a canon-
ical linear representation. Then, we have proposed an inference algorithm which
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identifies in the limit the class of rational stochastic tree languages. Our future
work will concern improvements of our approach in practical cases as evoked in
the previous discussion.
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Abstract. As some cognitive research suggests, in the process of learn-
ing languages, in addition to overt explicit negative evidence, a child
often receives covert explicit evidence in form of corrected or rephrased
sentences. In this paper, we suggest one approach to formalization of
overt and covert evidence within the framework of one-shot learners via
subset and membership queries to a teacher (oracle). We compare and
explore general capabilities of our models, as well as complexity advan-
tages of learnability models of one type over models of other types, where
complexity is measured in terms of number of queries. In particular, we
establish that “correcting” positive examples give sometimes more power
to a learner than just negative (counter)examples and access to full pos-
itive data.

1 Introduction

There are two major formal models that have been used over the years to address
various aspects of human learning: Gold’s model [Gol67] of identification in the
limit, that treats learning as a limiting process of creating and modifying hy-
potheses about the target concept, and Angluin’s model [Ang88] of learning via
queries that views learning as a finite (rather than an infinite limiting) process,
however, allowing interaction between a learner and a teacher (formally, an ora-
cle) in form of questions and answers. Unlike in Gold’s model, the learner in the
latter model cannot change its mind: it can ask a finite number of questions, but,
ultimately, it must produce a sole right conjecture (note that a different approach
to learning via oracles was suggested in [GS91]). Such learners have been named
one-shot in [LZ04]. There has been a good deal of research on one-shot learners
using primarily superset queries (when a learner asks if a particular language is
a superset of the target concept) and disjointness queries (when a learner asks
if a particular language is disjoint with the target concept) ([LZ05, JLZ05]). In
this paper, we study and compare one-shot learners that receive different types
of answers to subset and membership queries. Learners making subset queries

� Supported in part by NUS grant number R252-000-212-112 and 251RES070107.
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(testing if a particular language is a subset of the target concept) are concerned
with a possibility of overgeneralizing — that is, including into conjecture data
not belonging to the target concept. Membership queries test if a particular da-
tum belongs to the target concept — it is, perhaps, the most natural type of
a question to the teacher. We refer to these models as SubQ and, respectively,
MemQ.

While for a membership query, a natural answer would be just yes or no, a
learner making a subset query can also receive a negative counterexample show-
ing where a learner errs. In her original model [Ang88], D. Angluin suggested
that a learner could receive an arbitrary negative counterexample for a subset
query, when several negative counterexamples were possible. In addition to this,
traditional, type of answers to subset queries (considered in several variants of
models using subset queries, e.g., in [JK07a]), we also consider the following
types of answers:

— a learner receives the least negative counterexample (this type of counterex-
amples was considered, in particular, in [JK07a]); we refer to this model as
LSubQ.
— in addition to a negative counterexample, a learner receives a “correction”,
the positive example nearest to the negative one; this approach stems from the
following observation discussed, in particular, in [RP99]: while learning a lan-
guage, in addition to overt explicit negative evidence (when a parent points out
that a certain statement by a child is grammatically incorrect), a child often
receives also covert explicit evidence in form of corrected or rephrased utter-
ances. As languages in our learning models are represented by subsets of the
set of all positive integers, our concept of the nearest positive example seems
to be appropriate in the given context. We apply the same idea to membership
queries: we consider a model where a learner receives the nearest positive ex-
ample if it gets the answer ‘no’ to a membership query. We refer to these two
models as NPSubQ and, respectively, NPMemQ. A similar approach to “cor-
rection” queries was suggested in [BBBD05, BBDT06]: a learner, in response to
a membership query, receives the least (in the lexicographic order) extension of
the queried datum belonging to the target language. One can argue, however,
that a (rephrased) correcting sentence, while obviously being close to the queried
wrong one, is not necessarily an extension of it. Thus, in our model, we require
the “correction” to be just close to a wrong datum.
— in the above approach, a teacher may have difficulties providing the near-
est (correcting) positive example, as it can still be too complex — far larger
than the negative example. Therefore, we consider also a variant of learning via
queries, where the nearest positive example not exceeding the size of the neg-
ative example is provided (if any). We refer to the variants of this model for
subset and, respectively, membership queries as BNPSubQ and BNPMemQ
(B here stands for bounded).

In our most general models, we assume that, in addition to subset and/or
membership queries, a one-shot learner also has access to potentially all positive
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examples in the target concept. It can be easily seen that, when a learner can
make an indefinite number of subset or membership queries, this positive data
presented to a one-shot learner becomes essentially irrelevant. However, we will
also study the cases when the number of queries will be uniformly bounded, and
in this context access to additional positive data may be important.

We concentrate primarily on indexable classes of recursive languages [Ang80,
ZL95]; an example of an indexable class is the class of all regular languages. In
this context, it is natural to require a learner to output a conjecture that is an
index of the target concept in the given numbering. It is also natural to require
that subset queries are made about languages Li from the given indexed family
L (as defined in the original Angluin’s model) — these languages can be viewed
as potential conjectures.

Our primary goal is to compare variants of one-shot learners receiving vari-
ants of answers to subset and membership queries discussed above. First, we
compare capabilities of these learners, establishing where learners in one model
can learn classes of languages not learnable within the framework of another
model. Secondly, we study when and how learners of one type can learn same
classes of languages more efficiently than the learners of the other type, where
efficiency is measured in terms of number of queries made during the learning
process. In the latter context, unlike the case when the number of queries is not
bounded, if a learner can have access to (potentially) all positive data, this can
significantly affect its learning power. Therefore, we also consider positive data
(texts) as an additional factor for learners with a uniform bound on the number
of queries.

The paper is structured as follows. In Sections 2 and 3 we provide necessary
notation and define our models of one-shot learners via subset and membership
queries. In Section 4 we compare learning powers of different models defined in
Section 3. First we show that if the number of queries is not uniformly bounded,
then access to a text for the language does not enhance the capabilities of a
learner in any of our models. Thus, in cases where we compare learning power
of different models, we can assume that the learner does not receive the text of
a language. Specifically, we establish that

(a) least counterexamples provided in response to subset queries can help to
learn classes of languages that cannot be learned if the teacher, in addition to
arbitrary negative counterexample, provides the nearest positive example to the
negative counterexample too;

(b) learners receiving arbitrary nearest positive and bounded nearest positive
examples for subset or membership queries and corresponding counterexamples
or, respectively, answers ‘no’ are incomparable.

(c) learners using membership queries can sometimes learn more than the
ones using subset queries getting least counterexamples and the nearest positive
examples; conversely, learners using subset queries and getting the weakest type
of feedback can sometimes learn more than the ones using membership queries
and getting the strongest type of feedback in the framework of our models.
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For all the results above, examples of exhibited classes are such that the
learners on the negative sides cannot be helped even if they have access to full
positive data representing the target concept.

In Section 5 we primarily study the following problem: when a type of queries
QA does or does not give advantage over a type of queries QB when the num-
ber of queries of the type QA is uniformly bounded? Our main results can be
summarized as follows:

(a) one subset query providing the least counterexample can have more learn-
ing power than any number of subset queries returning arbitrary counterexam-
ples, even if the nearest positive examples and access to full positive data are
provided;

(b) one membership query and either the nearest positive example (for the
answer ‘no’), or access to full positive data can have more learning power than
any number of subset queries returning least counterexamples and the bounded
nearest positive examples, or returning arbitrary counterexamples and the near-
est positive examples — even in the presence of full positive data; for showing
advantage over least counterexamples and the nearest positive examples, we need
either one membership query and access to full text of the target language or two
membership queries and the nearest positive examples in case of ‘no’ answer.

(c) on the other hand, a finite number of subset queries returning least coun-
terexamples and the nearest positive examples can be used to learn any class of
languages learnable using only one membership query and the nearest positive
example; if no nearest positive examples to membership queries are provided,
then 2r − 1 subset queries are enough to learn any class learnable using r mem-
bership queries; if the bounded nearest positive examples to membership queries
are provided, then a finite number of subset queries is enough to learn any class
learnable using a bounded number of membership queries;

(d) still, one membership query returning a bounded positive example can have
more learning power than a previously fixed bounded number of subset queries
returning least negative counterexamples and the nearest positive examples —
even in presence of full positive data.

In this section, we also demonstrate that k + 1 membership or subset queries
can do more than k queries of the same type — even when the strongest ad-
ditional information (within the framework of our models) is provided. On the
other hand, for both membership and subset queries, it is shown that no bounded
number of membership or subset queries with the strongest additional infor-
mation can reach the power of learners using unlimited number of queries of
respective types.

We also study the following problem: when a class L is learnable using query
type QB, can one speed up the learning process (in terms of usage of number
of queries) by using query type QA? We address questions such as when classes
which are learnable using small number of queries of a type QA, require arbi-
trarily large number of queries of a type QB. For example, we address questions
about existence of classes which can be learned using 1 query of a type QA or
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finite number of queries of a type QB, but cannot be learned using bounded
number of queries of the type QB.

Overall, we hope that our results and multitude of different examples of classes
witnessing separations will give the reader a good insight on how one-shot learn-
ers using membership and subset queries operate. Section 6, Conclusion, is de-
voted to discussion of our results and possible directions for future research.

We refer the reader to [JK07b] for omitted proofs.

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol N
denotes the set of natural numbers, {0, 1, 2, 3, . . .}. Cardinality of a set S is
denoted by card(S). By ϕ we denote an acceptable numbering of all partial re-
cursive functions [Rog67]. ϕi denotes the partial recursive function computed by
program i in the ϕ system. Wi denotes domain(ϕi). Wi is thus the i-th recur-
sively enumerable set, in some acceptable numbering of recursively enumerable
(r.e.) sets. Symbol E will denote the set of all r.e. languages. Symbol L, with
or without decorations, ranges over E . Symbol L, with or without decorations,
ranges over subsets of E . We let K = {i | i ∈ Wi}. Note that K is a recursively
enumerable but not recursive set [Rog67].

L is called an indexed family of recursive languages (abbreviated: indexed
family) iff there exists an indexing (Li)i∈N of languages such that: (i) {Li | i ∈
N} = L; (ii) One can effectively determine, in i and x, whether x ∈ Li.

We now present some concepts from language learning theory. Gold considered
the following definition of presentation of data to a learner. A text T for a
language L is a mapping from N into (N ∪{#}) such that L is the set of natural
numbers in the range of T . The content of a text T , denoted by content(T ), is
the set of natural numbers in the range of T ; that is, the language which T is a
text for.

There are several criteria for learning considered in the literature. We will be
mainly concerned with finite learning [Gol67]. In this model, the learner gets a
text for the language as input. After reading some initial portion of the text,
the learner outputs a conjecture and stops. If this conjecture is correct, then
we say that the learner TxtFIN-identifies the language from the given text.
A learner TxtFIN-identifies a language if it TxtFIN-identifies the language
from all texts for the language. A learner TxtFIN-identifies L, if it TxtFIN-
identifies each L ∈ L. TxtFIN denotes the set of all classes L such that some
learner TxtFIN-identifies L.

An issue in the above model is the hypotheses space from where the conjec-
ture of the learner comes from. For this paper, we are mainly concerned about
learning indexed families of recursive languages and assume a class preserv-
ing hypotheses space. That is, we assume that there exists a hypotheses space
H0, H1, . . . , representing all the languages in an indexed family L such that

(i) one can effectively, from i and x, determine whether x ∈ Hi;
(ii) L = {Hi | i ∈ N}.
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3 Definitions for Query Learning

In addition to access to texts representing full positive data, the learners in
our model, following [Ang88], will also use two types of queries to the teacher
(formally, oracle): subset queries and membership queries.

We only consider queries in the context of class preserving learning. That is,
for learning a class L, all the hypotheses are assumed to be from the above men-
tioned hypotheses space H0, H1, . . .. The subset queries are now restricted to the
form “Hi ⊆ input language?”. Correspondingly, the membership queries are also
assumed to come from the hypotheses space: the learner only asks membership
queries of the form “x ∈ input language?”, for some x ∈

⋃
i∈N Hi. Note that this

approach is somewhat different from traditional membership queries, where any
member of N may be queried. If a learner uses hypotheses from the indexed fam-
ily, it is natural to require that it only tests if elements belonging to candidate
conjectures belong to the target concept. Moreover, if one allows membership
queries for any member of N , then one can obtain all positive and negative data
(so-called informant) for the input language, and thus the model (including the
cases for the (bounded) nearest positive examples) would collapse to learning
from informant, except for the case of learning the empty language, ∅. For these
reasons, for learning L, we restrict our study to considering membership queries
only for elements of

⋃
L∈L L.

The ‘yes’/‘no’ answer provided to the learner is based on whether the answer
to the query is true or false. For subset queries (about Hi), in case of ‘no’ answer
(meaning that Hi is not a subset of the input language), the teacher also provides
a negative counterexample, which is a member of Hi, but not a member of the
input language. Here, we make distinction between two different cases: when the
least counterexample is provided (we refer to such queries as LSubQ) and when
an arbitrary counterexample is provided (we refer to such queries as SubQ).

In addition, for ‘no’ answers to subset queries, we often also consider providing
the learner with the nearest positive example to the negative counterexample.
In the context of membership queries, if the answer is ‘no’, the learner is then
provided the positive example nearest to the queried element x. We will denote
it by using the prefix NP to the query type. We also consider the variant of pro-
viding the bounded nearest positive example, when the nearest positive example
not exceeding the negative counterexample (or negative element, in the context
of membership queries) is provided (this is denoted by using the prefix BNP to
the query type).

In addition text may or may not be provided to the learner: this is denoted
by using Txt in the criterion name.

The above will provide us with the following criteria for one-shot learnability:
SubQFIN, LSubQFIN, MemQFIN, NPSubQFIN, NPLSubQFIN,
NPMemQFIN, BNPSubQFIN, BNPLSubQFIN, BNPMemQFIN and
SubQTxtFIN, LSubQTxtFIN, MemQTxtFIN, NPSubQTxtFIN,
NPLSubQTxtFIN, NPMemQTxtFIN, BNPSubQTxtFIN,
BNPLSubQTxtFIN, BNPMemQTxtFIN. Below we formally give
the definition of NPLSubQFIN. Other criteria can be defined similarly.
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Definition 1. (a) M NPLSubQFIN-identifies L, iff for some class preserving
hypotheses space H0, H1, . . ., for all L ∈ L, M asks a sequence of subset queries,
where the answer to each query Hi is as follows:

(i) ‘yes’, if Hi ⊆ L
(ii) ‘no’, if Hi �⊆ L. In addition, the learner is provided with x = min(Hi − L)

as a negative counterexample and a y such that y is the earliest element in the
sequence x − 1, x + 1, x − 2, x + 2, . . . , 0, 2x, 2x + 1, 2x + 2, . . . which belongs to
L (if there is no such y, then a special answer ‘none’ is provided to the learner).

After asking a finite number of queries, the learner outputs an index i such
that Hi = L.

(b) NPLSubQFIN = {L | some M NPLSubQFIN-identifies L}.

Note that later queries may depend on earlier answers (and, in the case of text
being provided, on the elements of the text already read by the learner).

We sometimes consider limiting the number of queries made by the learner.
For example, NPMemQkTxtFIN denotes the criterion NPMemQTxtFIN
where the number of queries made by the learner is limited to k.

4 Relationships Among Various Query Criteria

Following Theorem shows that when there is no bound on the number of queries,
texts do not help: providing text does not increase learning power of one-shot
learners.

Theorem 1. Suppose Q ∈ {SubQ,LSubQ,MemQ}. Then, QFIN =
QTxtFIN; NPQFIN = NPQTxtFIN; BNPQFIN = BNPQTxtFIN.

4.1 Variants of SubQ

In this subsection, we explore relationships between different variants of SubQ.
First we show that learners getting least counterexamples can sometimes learn
more than any learner getting arbitrary counterexamples, as well as the nearest
positive examples, bounded or not, and access to full positive data.

Theorem 2. LSubQFIN − (NPSubQTxtFIN ∪ BNPSubQTxtFIN) �= ∅.

Proof. Let L = {100i + 1, 100i + 2, 100i + 3 | i ∈ N}.
Let Li = L − {100i + 1, 100i + 3}. Let Xi = L ∪ {100i + 1}.
Let L = {L} ∪ {Li | i ∈ N} ∪ {Xi | i ∈ K}.
Clearly, L is an indexed family. To see that L ∈ LSubQFIN, first query

whether L is a subset of the input language. If L is a subset of the input language,
then the input language must be L. Otherwise, the least counterexample is either
100i + 1 or 100i + 3, for some i. In the former case, the input language must be
Li. In the latter case, the input language must be Xi.

Now suppose by way of contradiction that L ∈ NPSubQTxtFIN
(BNPSubQTxtFIN) as witnessed by M. Then following algorithm solves K.
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On input i: Simulate M on a text for Li, where answers to the queries are as
follows — queries which do not contain 100i+3 are answered ‘yes’; queries which
contain 100i + 3 are answered ‘no’, along with the counterexample 100i + 3 and
the (bounded) nearest positive example 100i + 2. If, in this simulation, M ever
queries a language which contains 100i+1 but not 100i+3, then output i ∈ K. If
the simulation stops with a conjecture, without ever querying a language which
contains 100i + 1 but not 100i + 3, then output i �∈ K.

Now, as M NPSubQTxtFIN-identifies (BNPSubQTxtFIN-identifies) L,
M, on input language Li, must eventually output a conjecture. During the pro-
cess, if M queries a language containing 100i + 1, but not 100i + 3, then we
have i ∈ K, as M is allowed only to query languages within the class L. On the
other hand, if M outputs a conjecture without querying about Xi, then, since
the answers given to the queries of M are consistent with the input language
being Li or Xi, we must have that Xi �∈ L (otherwise, M cannot identify both
Li and Xi). Thus i �∈ K.

Our next result shows that learners getting arbitrary counterexamples and the
unbounded positive examples nearest to them can do sometimes more than the
ones getting the bounded nearest positive example, even if the latter ones receive
the least counterexamples and have access to full positive data.

Theorem 3. NPSubQFIN − BNPLSubQTxtFIN �= ∅.

Proof. Let L = {100i + x | i ∈ N, x ∈ {1, 3}}.
Let Li = L − {100i + 1}. Let Xi = Li ∪ {100i + 2}.
Let L = {L} ∪ {Li | i ∈ N} ∪ {Xi | i ∈ K}.
It is easy to verify that L is an indexed family. Now, we show that L ∈

NPSubQFIN. First, a learner can query L. If L is contained in the input
language, then the input language must be L. If there is a counterexample, it
must be 100i+1, for some i. Now the input language is Xi if the nearest positive
example was 100i + 2. Otherwise, the input language must be Li.

We can show that L �∈ BNPLSubQTxtFIN, as a learner for L can be used
to solve K as follows: on input Li, the learner either asks a query for Xi (in which
case i ∈ K), or outputs a conjecture for Li without ever asking a query for Xi

(in which case Xi must not be in L, as the input and answers are consistent with
both Li and Xi being the input language; thus i �∈ K). We omit the details.

As our next result shows, in the above result, the learners getting the unbounded
nearest positive examples can be replaced by the ones getting the bounded near-
est positive examples, and vice versa.

Therefore, the learners via subset queries and getting counterexamples and
the nearest positive data of these two types are incomparable.

Theorem 4. BNPSubQFIN− NPLSubQTxtFIN �= ∅.

From the above results, we can immediately derive the following corollary.

Corollary 1. SubQFIN ⊂ NPSubQFIN. LSubQFIN ⊂ NPLSubQFIN.
SubQFIN ⊂ BNPSubQFIN. LSubQFIN ⊂ BNPLSubQFIN.
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Our next result shows that learners getting the nearest positive examples, in
addition to arbitrary counterexamples, can sometimes learn more than the ones
getting the least counterexamples and full positive data, but no nearest positive
examples.

Theorem 5. NPSubQFIN ∩ BNPSubQFIN − LSubQTxtFIN �= ∅.

4.2 MemQ vs SubQ

In this subsection, we compare powers of one-shot learners using membership
and subset queries. We establish that, within the framework of our models,
weakest learners using one type of queries can sometimes do more than the
strongest learners using the other type of queries. First, we show that the learners
using membership queries can sometimes be stronger than the ones using subset
queries.

Theorem 6. MemQFIN− (NPLSubQTxtFIN∪BNPLSubQTxtFIN) �=
∅.

Proof. Let L = {0} ∪ {100i + 2, 100i + 3, 100i + 5 | i ∈ N}.
Let Li = {100i + 1, 100i + 5}. Let Xi = {100i + 1, 100i + 2, 100i + 5}.
Let L = {L} ∪ {Li | i ∈ N} ∪ {Xi | i ∈ K}.
We first show that L ∈ MemQFIN. Learner queries 0. If the answer is ‘yes’,

then input language must be L; Otherwise, learner determines an i such that
100i + 1 is in the input language. Then querying 100i + 2 determines whether
the input language is Li or Xi.

We can show that L �∈ NPLSubQTxtFIN (BNPLSubQTxtFIN), as a
learner for L can be used to solve K as follows: on input Li, the learner either
asks a query for Xi (in which case i ∈ K), or outputs a conjecture for Li without
ever asking a query for Xi (in which case Xi must not be in L, as the input text
and answers are consistent with both Li and Xi being the input language; thus
i �∈ K). We omit the details.

The following theorem demonstrates the advantage of subset queries over mem-
bership queries.

Theorem 7. SubQFIN−(NPMemQTxtFIN∪BNPMemQTxtFIN) �= ∅.

4.3 Different Variants of MemQ

In this subsection, we compare different variants of learners using membership
queries. Our first two results show that, as in the case of subset queries, learners
getting the unbounded or bounded nearest positive examples (in addition to
answers ‘no’) can learn more than learners getting the nearest positive example
of the other type and access to full positive data.

Theorem 8. NPMemQFIN − BNPMemQTxtFIN �= ∅.
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Theorem 9. BNPMemQFIN − NPMemQTxtFIN �= ∅.

Next result shows that the nearest positive examples of either type give some-
times more power to learners over those getting access to full positive data but
not getting the nearest positive examples: the nearest positive example, coupled
with the answer ‘no’ to a specific query, and obtained at the “right” time, can
be more helpful than access to a text for the target language.

Theorem 10. NPMemQFIN ∩ BNPMemQFIN − MemQTxtFIN �= ∅.

Results of this section can also be generalized to the case when r.e. classes of
r.e. languages are considered. Some of our results for bounded queries below also
work for r.e. classes of r.e. languages. However, we do not yet know if all of our
results on bounded queries can be obtained when r.e. classes of r.e. languages
are considered.

5 Complexity Hierarchy

This section gives the relationship between different criteria of query learning
considered in the paper: MemQ, SubQ, LSubQ, with or without the (bounded)
nearest positive example, and with or without text, when the number of queries
may be bounded. We begin with the following useful proposition.

Proposition 1. Suppose card(L) ≤ k + 1. Then L ∈ MemQkFIN and L ∈
SubQkFIN.

If the number of membership queries is uniformly bounded and the nearest
positive examples are bounded, then learnable classes are finite.

Proposition 2. Suppose k ∈ N .
(a) If L ∈ MemQkFIN, then card(L) ≤ 2k.
(b) If L ∈ BNPMemQkFIN, then L must be finite.

Our next result shows how one-shot learners using uniformly bounded member-
ship queries can simulate the ones using uniformly bounded number of subset
queries when the target class is finite.

Theorem 11. Suppose L is finite and L ∈ SubQkFIN. Then L ∈
MemQ2k−1TxtFIN.

Now we turn our attention to arbitrary (possibly infinite) target classes. First we
note that a learner using just one subset query can sometimes do more than any
learner using the strongest type of membership queries within the framework of
our models — including access to a text of the input language.

Theorem 12. SubQ1FIN−(NPMemQTxtFIN∪BNPMemQTxtFIN) �=
∅.
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The next result demonstrates what advantages of a bounded number of mem-
bership queries over subset queries are possible. The following picture is quite
complex. In particular, we show that r membership queries can be simulated
by 2r − 1 subset queries (we also show that this estimate is tight). However, if,
in addition to membership queries, a learner gets either access to text of the
input language, or the nearest positive examples, then, in most cases, just one
membership query gives advantage over a learner using subset queries (and get-
ting strongest feedback and having access to text of the input language). On the
other hand, a learner using a finite number of subset queries and getting least
counterexamples and the nearest positive examples can simulate any learner us-
ing just one membership query and getting the nearest positive examples; still,
such a simulation is not always possible if a learner can use two such membership
queries. Also, learners using a uniformly bounded number of membership queries
and getting bounded positive examples can always be simulated by learners using
subset queries if the number of queries of the latter type is not bounded.

Theorem 13. (a) MemQ1TxtFIN − (NPLSubQTxtFIN ∪
BNPLSubQTxtFIN) �= ∅.

(b) NPMemQ1FIN − (NPSubQTxtFIN ∪ BNPLSubQTxtFIN) �= ∅.
(c) NPMemQ2FIN − (NPLSubQTxtFIN ∪ BNPLSubQTxtFIN) �= ∅.
(d) NPMemQ1FIN ⊆

⋃
r∈N NPLSubQrFIN.

(e) For all k, NPMemQ1FIN − (NPLSubQkTxtFIN ∪
BNPLSubQkTxtFIN) �= ∅.

(f) For all k, BNPMemQ1FIN − (NPLSubQkTxtFIN ∪
BNPLSubQkTxtFIN) �= ∅.

(g) For all k, BNPMemQkFIN ⊆
⋃

r∈N SubQrFIN.
(h) For r ≥ 1, MemQrFIN − (BNPLSubQ2r−2TxtFIN ∪

NPLSubQ2r−2TxtFIN) �= ∅.
(i) For r ≥ 1, MemQrFIN ⊆ SubQ2r−1FIN.

Proof. We only show part (d). Suppose the queried element by NPMemQ1FIN
learner is y. Let A be the language in L which contains y (there must be such
an A as queries are posed only for elements belonging to at least one language
in L; furthermore such an A is unique as the learner learns the class using only
one membership query). For i ≤ 2y, let Ai be the language in L which does
not contain y, but contains i as the element nearest to y (here, recall that the
nearest elements to y have the order y − 1, y + 1, y − 2, y + 2, . . .). Now the
NPLSubQFIN learning algorithm is:

1. Query A, A0, A1, . . ., A2y . Find which of these are subsets of the input
language. If none, then proceed to the step 2. Otherwise, the subset sequence
uniquely determines the input language. (If A is a subset of the input language,
then the input language must be A; otherwise it is Ai, where Ai is a subset of
the input language and, among all j such that j ≤ 2y and Aj ⊆ input language,
i is the nearest element to y; note that this Ai would be the conjecture returned
by the NPMemQ1FIN learner, when the membership query for y is answered
‘no’, with the nearest positive example being i — no other nearer element to
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y exists in the input language, as otherwise the conjecture of NPMemQ1FIN
learner would not be a subset of the input language).

2. If the algorithm reaches this step, then A is not a subset of the input lan-
guage. The least negative counterexample to query A has to be an element ≤ y.
Let the corresponding nearest positive example be z. Note that z > 2y (other-
wise step 1 would have handled the case). Give ‘no’ answer to the membership
query for y by the NPMemQ1FIN learner, with the nearest positive example
being z (since z is also the nearest positive example in the input language for
‘no’ answer to the membership query for y). Output the conjecture outputted
by the NPMemQ1FIN learner.

Note that the number of queries made above by the NPLSubQFIN learner
is bounded by 2y + 2.

Now we will compare learners using queries of the same type. Our next result
shows that one subset query providing the least counterexample can do more
than subset queries returning arbitrary counterexamples, even if the nearest
positive examples are returned, and a text of the input language is accessible.

Theorem 14. LSubQ1FIN − (NPSubQTxtFIN ∪ BNPSubQTxtFIN) �=
∅.

The next result establishes hierarchies on the number of queries. We show that,
for both types of queries, k + 1 queries give more than k (even if a learner using
k queries gets additional feedback and has access to full positive data).

Theorem 15. For all k ∈ N ,
(a) SubQk+1FIN − (NPLSubQkTxtFIN ∪ BNPLSubQkTxtFIN) �= ∅.
(b) MemQk+1FIN − (NPMemQkTxtFIN∪BNPMemQkTxtFIN) �= ∅.

For both types of queries, uniformly bounded number of queries is not enough
to achieve full learning power.

Theorem 16. (a) SubQFIN −
⋃

k∈N (NPLSubQkTxtFIN ∪
BNPLSubQkTxtFIN) �= ∅.

(b) MemQFIN −
⋃

k∈N (NPMemQkTxtFIN ∪BNPMemQkTxtFIN) �=
∅.

Next two results compare power of the nearest and the bounded nearest positive
examples for learners using the same type of queries. Our next result shows that
one subset query returning negative counterexample and the nearest positive
example of either type can do more than any learner using subset queries, least
counterexamples, nearest positive examples of the other type, and full positive
data.

Theorem 17. NPSubQ1FIN − BNPLSubQTxtFIN �= ∅.
BNPSubQ1FIN − NPLSubQTxtFIN �= ∅.

For membership queries, the picture is more complex. One unbounded nearest
positive example can do more than any number of bounded nearest positive
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examples — even in the presence of full positive data. However, the learners
making membership queries and getting the bounded nearest positive examples
can be simulated by learners using a finite number of just simple membership
queries; still, no uniform bound on the number of queries in such a simulation is
possible (even if the learner receives also the nearest positive examples and has
access to full positive data) — moreover, if the learner using just one bounded
positive example has also access to full positive data, then no simulation like the
one above is possible.

Theorem 18. (a) NPMemQ1FIN − BNPMemQTxtFIN �= ∅.
(b) For k ∈ N , BNPMemQkFIN ⊆

⋃
r∈N MemQrFIN.

(c) For k ∈ N , BNPMemQ1FIN − NPMemQkTxtFIN �= ∅.
(d) BNPMemQ1TxtFIN − NPMemQTxtFIN �= ∅.

Theorem 1 showed that TxtFIN ⊆ MemQFIN ∩ SubQFIN. Now we show
that no uniformly bounded number of queries of either type suffices for simulation
of full positive data.

Theorem 19. TxtFIN −
⋃

k∈N (NPLSubQkFIN ∪ BNPLSubQkFIN ∪
NPMemQkFIN ∪ BNPMemQkFIN) �= ∅.

We now consider when a class is learnable by using query type QB, but needs
a high number of queries, whereas if we had used query type QA, then a small
number of queries suffice. Ideally, for diagonalizations (showing that one type of
queries may be stronger than the other one) and complexity speedup, we would
like theorems of the following types: (A) QA1FIN∩QBFIN diagonalizes against⋃

k∈N (BNPQBkTxtFIN ∪NPQBkTxtFIN); (B) QA1FIN ∩ QBk+1FIN di-
agonalizes against BNPQBkTxtFIN ∪ NPQBkTxtFIN. That would give us
a perfect set of speedup effects. However, this is not always possible, and we
get as close to the above as possible (we do not have the best possible results
for QB being MemQ, and QA being SubQ). Note also that the results of type
(C): QA1FIN diagonalizes against BNPQBTxtFIN∪NPQBTxtFIN — have
been obtained earlier in this section, where possible: see Theorems 12, 13, and 14.
Due to space restrictions, here we only deal with problems of form (A) above.

Theorem 20. LSubQ1FIN ∩ SubQFIN −
⋃

k∈N (NPSubQkTxtFIN ∪
BNPSubQkTxtFIN) �= ∅.

Theorem 21. (a) MemQ1TxtFIN ∩ SubQFIN −⋃
k∈N (NPLSubQkTxtFIN ∪ BNPLSubQkTxtFIN) �= ∅.
(b) NPMemQ1FIN ∩ SubQFIN −

⋃
k∈N (NPSubQkTxtFIN ∪

BNPLSubQkTxtFIN) �= ∅.
(c) NPMemQ2FIN ∩ SubQFIN −

⋃
k∈N (NPLSubQkTxtFIN ∪

BNPLSubQkTxtFIN) �= ∅.
(d) MemQFIN ∩ SubQFIN −

⋃
k∈N (NPLSubQkTxtFIN ∪

BNPLSubQkTxtFIN) �= ∅.
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The above theorem is optimal, as
⋃

r∈N BNPMemQrFIN ⊆⋃
k∈N SubQkFIN, (see Propositions 1 and 2) and NPMemQ1FIN ⊆⋃
k∈N NPLSubQkFIN (see Theorem 13).

Theorem 22. SubQ1FIN ∩ MemQFIN −
⋃

k∈N (NPMemQkTxtFIN ∪
BNPMemQkTxtFIN) �= ∅.

We also studied problems of the type (B) mentioned above. Questions about
what happens when QA = SubQ and QB = MemQ are not fully resolved yet
for this situation. Relevant results, discussion, and open problems can be found
in [JK07b].

We also have results similar to the ones obtained in this section, when one
considers separation of nearest positive examples versus bounded nearest positive
examples, and vice versa, rather than based on number of queries. However, we
do not have a complete picture there either.

6 Conclusion

In this paper, we extended Angluin’s model of learning via subset and member-
ship queries, allowing teachers, in addition to just answers ‘no’ or arbitrary coun-
terexamples (as suggested by Angluin in her original query model in [Ang88]) to
return least counterexamples and/or the nearest (“correcting”) positive examples
together with answer ‘no’ or a counterexample. We explored how different vari-
ants of corresponding learning models fair against each other in terms of their
general learning capabilities and in terms of their complexity advantages, where
number of queries is used as the complexity measure (in the latter case, possible
access to a text for the target language becomes a significant factor, contribut-
ing an interesting component to the interplay of different learning tools). As
we established, “correcting” nearest positive examples can sometimes do more
than just negative (counter)examples and access to full positive data. We also
established that, though, in most cases, just one query of one type can do more
than any number of queries of another type with the strongest possible feed-
back, typically even coupled with access to text for the target language, the
general picture is more complex — for example, sometimes one query is not
enough, while two queries suffice — or one query is enough to achieve advantage
(general, or complexity) if a learner has also access to full positive data.

In our model, indexed families do not contain languages not belonging to the
target class (such families are known in literature as class preserving). It would
be interesting to explore how our approach works in the context of learning via
class comprising hypotheses spaces, when an (indexed) hypotheses space can
contain languages not belonging to the target class.

Our approach to representation of covert feedback from a teacher in form of
the nearest positive examples is, of course, only one of several possible ways to
address this problem (a somewhat different approach was suggested in [BBBD05,
BBDT06]). It would be interesting also to define and explore formalizations of
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one-shot learnability via queries, where positive feedback were semantically close
or structurally similar to the negative datum, rather than being close based on
coding. Such models may also be interesting in the context of learning some
important specific indexed classes, for example, patterns, finite automata, or
regular expressions.

Acknowledgements. We thank the anonymous referees for helpful comments.
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Abstract. We investigate two of the language classes intensively studied
by the algorithmic learning theory community in the context of learn-
ing with correction queries. More precisely, we show that any pattern
language can be inferred in polynomial time in length of the pattern by
asking just a linear number of correction queries, and that k-reversible
languages are efficiently learnable within this setting. Note that although
the class of all pattern languages is learnable with membership queries,
this cannot be done in polynomial time. Moreover, the class of k-reversible
languages is not learnable at all using membership queries only.
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1 Introduction

Without any doubt, there is no formal model that can capture all aspects of hu-
man learning. Nevertheless, the overall aim of researchers working in algorithmic
learning theory has been to gain a better understanding of what learning really
is. Actually, the field itself has been introduced as an attempt to construct a
precise model for the notion of “being able to speak a language” [9].

Among the most celebrated models (Gold’s model of learning from examples
[9], Angluin’s query learning model [4], Valiant’s PAC learning model [18]), the
best one for describing the child-adult interaction within the process of child
acquiring his native language is the one proposed in [4]. There, the learner re-
ceives information about a target concept by asking queries of a specific kind
(depending on the chosen query model type) which will be truthfully answered
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by the teacher. After finitely many queries, the learner is required to return its
hypothesis, and this should be the correct one.

The first query learning algorithm, called L∗, was able to identify any min-
imal complete deterministic finite automaton (DFA) in polynomial time, using
membership queries (MQs) and equivalence queries (EQs) [4]. Meanwhile, other
types of queries have been introduced: subset, superset, disjointness and exhaus-
tive queries [5], structured MQs [15], etc., and also various target concepts have
been investigated: non-deterministic finite automata [19], context-free grammars
[15], two-tape automata [20], regular tree languages [8,17], etc.

Still, none of the above mentioned queries reflects one important aspect of
children language acquisition, namely that although children are not explicitly
provided negative information, they are corrected when they make mistakes.
Following this idea, L. Becerra-Bonache, A.H. Dediu and C. Tı̂rnăucă introduced
in [7] a new type of query, the so-called correction query (CQ), and showed
that DFAs are learnable in polynomial time using CQs and EQs. Continuing
the investigation on CQs, C. Tı̂rnăucă and S. Kobayashi found necessary and
sufficient conditions for an indexable class of recursive languages to be learnable
with CQs only [16]. Also, they showed some relations existing between this model
and other well-known (query and Gold-style) learning models.

In contrast with the approach in [16], where the learnability was studied
regardless time complexity, we focus in this paper on algorithms for identifying
language classes in polynomial time. Thus, the rest of the paper is structured as
follows. Preliminary notions and results are presented in Section 2. In Section
3 we give a polynomial time algorithm for learning the class of k-reversible
languages with CQs. Section 4 contains an algorithm for learning the class of
pattern languages, along with discussions about correctness, termination and
time analysis. In Section 5 we present some results on the learnability with MQs
of the classes investigated in the previous sections. We conclude with remarks
and future work ideas (Section 6).

2 Preliminaries

Familiarity with standard recursion and language theoretic notions is assumed
(good introductory books are [10,12], for example).

Let Σ be a finite alphabet of symbols. By Σ∗ we denote the set of all finite
strings of symbols from Σ. A language is any set of strings over Σ. The length
of a string w is denoted by |w|, and the concatenation of two strings u and v by
uv or u · v. The empty string (i.e., the unique string of length 0) is denoted by
λ. If w = uv for some u, v ∈ Σ∗, then u is a prefix of w and v is a suffix of w.

A set S is said to be prefix-closed if for all strings u in S and all prefixes v of
u, the string v is also in S. The notion of suffix-closed set is defined similarly.

By Σ≤k we denote the set {w ∈ Σ∗ | |w| ≤ k}, by Pref (L) the set {u | ∃v ∈
Σ∗ such that uv ∈ L} of all prefixes of a language L ⊆ Σ∗, and by TailL(u) =
{v | uv ∈ L} the left-quotient of L and u. Thus, TailL(u) �= ∅ if and only if
u ∈ Pref (L).
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A deterministic finite automaton is a 5-tuple A = (Q, Σ, δ, q0, F ), where Q is
a finite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q
is the set of final states, and δ is a partial function, called transition function,
that maps Q × Σ to Q. This function can be extended to strings by writing
δ(q, λ) = q, and δ(q, u · a) = δ(δ(q, u), a) for all q ∈ Q, u ∈ Σ∗ and a ∈ Σ. A
string u ∈ Σ∗ is accepted by A if δ(q0, u) ∈ F . The set of strings accepted by
A is denoted by L(A) and called a regular language. The number of states of an
automaton A is also called the size of A. A DFA A = (Q, Σ, δ, q0, F ) is complete
if for all q in Q and a in Σ, δ(q, a) is defined, i.e., δ is a total function. For any
regular language L, there exists a minimum state DFA AL such that L(AL) = L
(see [10], pp. 65-71).

A state q is called reachable if there exists u ∈ Σ∗ such that δ(q0, u) = q and
co-reachable if there exists u ∈ Σ∗ such that δ(q, u) ∈ F . A reachable state that
is not co-reachable is a sink state. Note that in a minimum DFA there is at most
one sink state, and all states are reachable.

Given a language L ⊆ Σ∗, one can define the following relation on strings:
u1 ≡L u2 if and only if for all u in Σ∗, u1 · u ∈ L ⇔ u2 · u ∈ L. It is easy
to show that ≡L is an equivalence relation, and thus it divides the set of all
finite strings in Σ∗ into one or more equivalence classes. We denote by [u]L (or
simply [u], when there is no confusion) the equivalence class of the string u (i.e.,
{u′ | u′ ≡L u}), and by Σ∗/≡L the set of all equivalence classes induced by ≡L

on Σ∗.
The Myhill-Nerode Theorem states that the number of equivalence classes of

≡L (also called the index of L) is equal to the number of states of AL. As a
direct consequence, a language L is regular if and only its index is finite.

Assume that Σ is a totally ordered set, and let ≺lex be the lexicographical
order on Σ∗. Then, the lex-length order ≺ on Σ∗ is defined by: u ≺ v if either
|u| < |v|, or else |u| = |v| and u ≺lex v. In other words, strings are compared
first according to length and then lexicographically.

If f : A → B is a function, by f(X) we denote the set {f(x) | x ∈ X}.
Moreover, we say that f and g are equal if they have the same domain A, and
f(x) = g(x) for all x ∈ A.

2.1 Query Learning

Let C be a class of recursive languages over Σ∗. We say that C is an indexable
class if there is an effective enumeration (Li)i≥1 of all and only the languages
in C such that membership is uniformly decidable, i.e., there is a computable
function that, for any w ∈ Σ∗ and i ≥ 1, returns 1 if w ∈ Li, and 0 otherwise.
Such an enumeration will subsequently be called an indexing of C. In the sequel
we might say that C = (Li)i≥1 is an indexable class and understand that C is an
indexable class and (Li)i≥1 is an indexing of C.

In the query learning model a learner has access to an oracle that truthfully
answers queries of a specified kind. A query learner M is an algorithmic device
that, depending on the reply on the previous queries, either computes a new
query, or returns a hypothesis and halts.
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More formally, let C = (Li)i≥1 be an indexable class, M a query learner, and
let L ∈ C. We say that M learns L using some type of queries if it eventually
halts and its only hypothesis, say i, correctly describes L, i.e., Li = L. So, M
returns its unique and correct guess i after only finitely many queries. Moreover,
M learns C using some type of queries if it learns every L ∈ C using queries of
the specified type. In the sequel we consider:

– Membership queries. The input is a string w, and the answer is ‘yes’ or ‘no’,
depending on whether or not w belongs to the target language L.

– Correction queries. The input is a string w, and the answer is the smallest
string (in lex-length order) of the set TailL(w) if w ∈ Pref (L), and the
special symbol θ �∈ Σ otherwise. We denote the correction of a string w with
respect to the language L by CL(w).

The collection of all indexable classes C for which there is a query learner M
such that M learns C using MQs (CQs) is denoted by MemQ (CorQ , respec-
tively).

3 Learning k-Reversible Languages with CQs

Angluin introduces the class of k-reversible languages (henceforth denoted by
k-Rev) in [3], and shows that it is inferable from positive data in the limit. Later
on, she proves that there is no polynomial algorithm that exactly identifies DFAs
for 0-reversible languages using only equivalence queries [6].

We study the learnability of the class k-Rev in the context of learning with
CQs, and show that there is a polynomial time algorithm which identifies any
k-reversible language after asking a finite number of CQs.

Although the original definition of k-reversible languages uses the notion of
k-reversible automata, we will give here only a purely language-theoretic char-
acterization.

Theorem 1 (Angluin, [3]). Let L be a regular language. Then L is in k-Rev if
and only if whenever u1vw, u2vw are in L and |v| = k, TailL(u1v) = TailL(u2v).

Let Σ be an alphabet, and L ⊆ Σ∗ be the target k-reversible language. For
any string u in Σ∗, we define the function rowk(u) : Σ≤k → Σ∗ ∪ {θ} by
rowk(u)(v) = CL(uv). We show that each equivalence class in Σ∗/≡L is uniquely
identified by the values of function rowk on Σ≤k.

Proposition 1. Let L be a k-reversible language. Then, for all u1, u2 ∈ Σ∗,
u1 ≡L u2 if and only if rowk(u1) = rowk(u2).

Proof. Let us first notice that for all regular languages L and for any k ∈ IN,
u1 ≡L u2 ⇒ rowk(u1) = rowk(u2) (by the definition of function rowk), so we
just have to show that rowk(u1) = rowk(u2) ⇒ u1 ≡L u2.

Indeed, suppose there exist u1, u2 ∈ Σ∗ such that rowk(u1) = rowk(u2) and
u1 �≡L u2. Hence, there must exist w such that either
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– u1w ∈ L and u2w �∈ L, or
– u1w �∈ L and u2w ∈ L.

Let us assume the former case (the other one is similar).

1) If |w| ≤ k, then w ∈ Σ≤k, and since rowk(u1) = rowk(u2) we get in particu-
lar rowk(u1)(w) = rowk(u2)(w), that is CL(u1w) = CL(u2w). But u1w ∈ L
implies CL(u1w) = λ, and so CL(u2w) = λ which is in contradiction with
u2w �∈ L.

2) If |w| > k, then there must exist v, w′ ∈ Σ∗ such that w = vw′ and |v| = k.
Moreover, by assumption u1vw′ ∈ L and u2vw′ �∈ L, so u1v �≡L u2v.
On the other hand since rowk(u1) = rowk(u2) and v ∈ Σ≤k, we have
rowk(u1)(v) = rowk(u2)(v), that is CL(u1v) = CL(u2v) = v′. Because
u1v · w′ ∈ L, TailL(u1v) �= ∅ and hence CL(u1v) ∈ Σ∗. Since L ∈ k-Rev ,
u1vv′ ∈ L, u2vv′ ∈ L and |v| = k, we get TailL(u1v) = TailL(u2v) (cf. The-
orem 1) which is in contradiction with u1v �≡L u2v. ��

This result tells us that if AL = (Q, Σ, δ, q0, F ) is the minimal complete au-
tomaton for the k-reversible language L, then the values of function rowk(u)
on Σ≤k uniquely identify the state δ(q0, u). We use this property to show that
k-reversible languages are learnable in polynomial time with CQs.

3.1 The Algorithm

The algorithm follows the lines of L∗. We have an observation table denoted by
(S, E, C) in which lines are indexed by the elements of a prefix-closed set S,
columns are indexed by the elements of a suffix-closed set E, and the element of
the table situated at the intersection of line u with column v is CL(uv).

We start with S = {λ} and E = Σ≤k, and then increase the size of S by
adding elements with distinct row values. An important difference between our
algorithm and L∗ is that in our case the set E is never modified during the run
of the algorithm (in L∗, E contains only one element in the beginning, and it is
gradually enlarged when needed).

We say that the observation table (S, E, C) is closed if for all u ∈ S and
a ∈ Σ, there exists u′ ∈ S such that rowk(u′) = rowk(ua). Moreover, (S, E, C)
is consistent if for all u1, u2 ∈ S, rowk(u1) �= rowk(u2). It is clear that if the
table (S, E, C) is consistent and S has exactly n elements, where n is the index
of L, then the strings in S are in bijection with the elements of Σ∗/≡L .

For any closed and consistent table (S, E, C), we construct the automaton
A(S, E, C) = (Q, Σ, δ, q0, F ) as follows. Q := {rowk(u) | u ∈ S}, q0 := rowk(λ),
F := {rowk(u) | u ∈ S and CL(u) = λ}, and δ(rowk(u), a) := rowk(ua) for all
u ∈ S and a ∈ Σ.

To see that this is a well-defined automaton, note that since S is a non-empty
prefix-closed set, it must contain λ, so q0 is defined. Because S is consistent,
there are no two elements u1, u2 in S such that rowk(u1) = rowk(u2). Thus, F
is well defined. Since the observation table (S, E, C) is closed, for each u ∈ S
and a ∈ Σ, there exists u′ in S such that rowk(ua) = rowk(u′), and because it
is consistent, this u′ is unique. So δ is well defined.
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Remark 1. The following statements are true.

1) rowk(u) is a sink state if and only if CL(u) = θ;
2) δ(q0, u) = rowk(u) for all u in S ∪ SΣ.

We present a polynomial time algorithm that learns any k-reversible language
L after asking a finite number of CQs.

Algorithm 1. An algorithm for learning the class k-Rev with CQs
1: S := {λ}, E := Σ≤k

2: closed := TRUE
3: update the table by asking CQs for all strings in {uv | u ∈ S ∪ SΣ, v ∈ E}
4: repeat
5: if ∃u ∈ S and a ∈ Σ such that rowk(ua) �∈ rowk(S) then
6: add ua to S
7: update the table by asking CQs for all strings in {uaa′v | a′ ∈ Σ, v ∈ E}
8: closed := FALSE
9: end if

10: until closed
11: output A(S, E, C) and halt.

Note that since the algorithm adds to S only elements with distinct row values,
the table (S, E, C) is always consistent. We will see that as long as |S| < n, it is
not closed.

Lemma 1. If |S| < n, then (S, E, C) is not closed.

Proof. Let us assume that there exists m < n such that |S| = m and the
table (S, E, C) is closed. Let AL = (Q′, Σ, δ′, q′0, F

′) be the minimal complete
automaton accepting L, and A(S, E, C) = (Q, Σ, δ, q0, F ).

We define the function ϕ : Q → Q′ by ϕ(rowk(u)) := δ′(q′0, u). Note that ϕ is
well-defined because there are no two strings u1, u2 in S such that rowk(u1) =
rowk(u2). Moreover, it is injective since ϕ(rowk(u1)) = ϕ(rowk(u2)) implies
δ′(q′0, u1) = δ′(q′0, u2) which is equivalent to [u1] = [u2], and cf. Proposition 1,
to rowk(u1) = rowk(u2). We show that ϕ is a morphism of automata from
A(S, E, C) to AL, that is: ϕ(q0) = q′0, ϕ(F ) ⊆ F ′, and ϕ(δ(rowk(u), a)) =
δ′(ϕ(rowk(u)), a) for all u ∈ S and a ∈ Σ.

Clearly, ϕ(q0) = ϕ(rowk(λ)) = δ′(q′0, λ) = q′0. Let us now take rowk(u) in
F , that is, u ∈ S and CL(u) = λ. Since ϕ(rowk(u)) = δ′(q′0, u) and u ∈
L, it follows that ϕ(rowk(u)) ∈ F ′. Finally, ϕ(δ(rowk(u), a)) = ϕ(rowk(ua))
= ϕ(rowk(v)) for some v in S such that rowk(ua) = rowk(v) (the table is
closed), and δ′(ϕ(rowk(u)), a) = δ′(δ′(q′0, u), a) = δ′(q′0, ua). It is enough to see
that ϕ(rowk(v)) = δ′(q′0, v) = δ′(q′0, ua) (because by Proposition 1, rowk(v) =
rowk(ua) implies [v] = [ua], and AL is the minimal automaton accepting L) to
conclude the proof.
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We have constructed an injective morphism from A(S, E, C) to AL such that
|Q| = m < n = |Q|. Since both A(S, E, C) and AL are complete automata, this
leads to a contradiction. ��

We show that Algorithm 1 cannot be used for the whole class of regular lan-
guages.

Lemma 2. Algorithm 1 does not work in general for arbitrary regular languages.

Proof. Indeed, let us assume that Algorithm 1 can identify any regular language.
Let us fix k ≥ 0, and consider the language Lk = {abka, abkb, bk+1a} which is
finite, and hence regular. The minimal complete DFA of Lk is represented in
Figure 1.

Fig. 1. The automaton ALk

Since the strings a · bk · a and b · bk · a are both in Lk, and TailLk
(a · bk) =

{a, b} �= {a} = TailLk
(b · bk), the language Lk is not k-reversible (Theorem 1).

When running the algorithm on Lk, the set S is initialized with the value {λ}.
Then, since both rowk(a) and rowk(b) are different from rowk(λ), one of the two
elements is added to S. Note that for all u in Σ≤k, rowk(a)(u) = rowk(b)(u)
because:

– if u = bi with 0 ≤ i ≤ k, then CLk
(au) = bk−ia = CLk

(bu), and
– if u = Σ≤k\{bi | 0 ≤ i ≤ k}, then CLk

(au) = θ = CLk
(bu).

Hence, rowk(a) = rowk(b). But this implies that in the automaton output by
the algorithm, the strings a and b represent the same state, a contradiction. ��

In the following sections we show that the algorithm runs in polynomial time, and
terminates with the minimal automaton for the target language as its output.

3.2 Correctness and Termination

We have seen that as long as |S| < n, the table is not closed, so there will always
be an u in S and a symbol a in Σ such that rowk(ua) �∈ rowk(S). Since the
cardinality of the set S is initially 1, and increases by 1 with each “repeat-until”
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loop (lines 4–10), it will eventually be n, and hence the algorithm is guaranteed
to terminate.

We claim that when |S| = n, the observation table (S, E, C) is closed and
consistent, and A(S, E, C) is isomorphic to AL. Indeed if |S| = n, then the set
{rowk(u) | u ∈ S} has cardinality n, since the elements of S have distinct row
values. Thus for all u ∈ S and a ∈ Σ, rowk(ua) ∈ rowk(S) (otherwise [ua] would
be the (n + 1)th equivalence class of Σ∗/≡L), and hence the table is closed.

To see that A(S, E, C) and AL are isomorphic, let us take A(S, E, C) =
(Q, Σ, δ, q0, F ), AL = (Q′, Σ, δ′, q′0, F

′), and the function ϕ : Q → Q′ defined
by ϕ(rowk(u)) := δ′(q′0, u) for all u ∈ S. As in the proof of Lemma 1, it can
be shown that ϕ is a well-defined and injective automata morphism. Since the
two automata have the same number of states, ϕ is also surjective, and hence
bijective. Let us now show that ϕ(F ) = F ′. Indeed, take q ∈ F ′. Because ϕ is
bijective, there exists u in S such that ϕ(rowk(u)) = q. It follows immediately
that δ′(q′0, u) ∈ F ′, and hence u ∈ L. Thus, CL(u) = λ and rowk(u) ∈ F . Clearly,
ϕ(rowk(u)) = q ∈ ϕ(F ). So, F ′ ⊆ ϕ(F ), and since ϕ(F ) ⊆ F ′, ϕ(F ) = F ′ which
concludes the proof.

3.3 Time Analysis and Query Complexity

Let us now discuss the time complexity of the algorithm. While the cardinality of
S is smaller than n, the algorithm searches for a string u in S and a symbol a in
Σ such that rowk(ua) is distinct from all rowk(v) with v ∈ S. This can be done
using at most |S|2 · |Σ| · |E| operations: there are |S| possibilities for choosing u
(and the same number for v), |Σ| for choosing a, and |E| operations to compare
rowk(ua) with rowk(v). If we take |Σ| = l, the total running time of the “repeat-
until” loop can be bounded by (12 + 22 + . . .+ (n − 1)2) · l · (1 + l + l2 + . . .+ lk).
Note that by “operations” we mean string comparisons, since they are generally
acknowledged as being the most costly tasks.

On the other hand, to construct A(S, E, C) we need n comparisons for deter-
mining the final states, and at most n2 · |Σ| · |E| operations for constructing the
transition function. This means that the total running time of the algorithm is
bounded by n + l · lk+1−1

l−1 · n(n+1)(2n+1)
6 , that is O(n3lk).

As for the number of queries asked by the algorithm, it can be bounded by
|S ∪ SΣ| · |E| (i.e., by the size of the final observation table), so the query
complexity of the algorithm is O(nlk).

4 Pattern Languages

Initially introduced by Angluin [1] to show that there are non-trivial classes of
languages learnable from text in the limit, the class of pattern languages has been
intensively studied in the context of language learning ever since. Polynomial
time algorithms have been given for learning pattern languages using one or
more examples and queries [13], or just superset queries [5], or for learning k-
variables pattern languages from examples [11], etc.
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We assume a finite alphabet Σ such that |Σ| ≥ 2, and a countable, infinite set
of variables X = {x, y, z, x1, y1, z1, . . . , }. A pattern π is any non-empty string
over Σ ∪ X . The pattern language L(π) consists of all the words obtained by
replacing the variables in π with arbitrary strings in Σ+. Let us denote by P
the set of all pattern languages over a fixed alphabet Σ.

We say that the pattern π is in normal form if the variables occurring in π
are precisely x1, . . . , xk, and for every j with 1 ≤ j < k, the leftmost occurrence
of xj in π is left to the leftmost occurrence of xj+1.

Next we show that there exists an algorithm which learns P using a finite
number of CQs.

4.1 The Algorithm

Suppose that the target language is a pattern language L(π), where π is in
normal form. Then the following algorithm outputs the pattern π after asking a
finite number of CQs.

Algorithm 2. An algorithm for learning the class P with CQs
1: w := CL(λ), n := |w|, var := 0
2: for i := 1 to n do
3: π[i] := null
4: end for
5: for i := 1 to n do
6: if (π[i] = null) then
7: choose a ∈ Σ\{w[i]} arbitrarily
8: v := CL(w[1 . . . i − 1]a), m := |v|
9: if (|v| = |w[i + 1, . . . , n]|) then

10: var := var + 1, π[i] := xvar

11: for all j ∈ {1, . . . , m} for which v[j] �= w[i + j] do
12: π[i + j] := xvar

13: end for
14: else
15: π[i] := w[i]
16: end if
17: end if
18: end for
19: output π

4.2 Correctness and Termination

The correctness of the algorithm is based on the following observation. If w is
the smallest string (in lex-length order) in L(π) and n = |w|, then for all i in
{1, . . . , n}, we have:

– if π[i] is a variable x such that i is the position of the leftmost occurrence
of x in π, then |CL(w[1, . . . , i − 1]a)| = |w[i + 1, . . . , n]| for any symbol
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a ∈ Σ; moreover, we can detect the other occurrences of the variable x in
π by just checking the positions where the strings CL(w[1, . . . , i − 1]a) and
w[i + 1, . . . , n] do not coincide, where a is any symbol in Σ\{w[i]};

– if π[i] = a for some a in Σ, then for all b ∈ Σ\{a}, CL(w[1, . . . , i − 1]b) is
either θ, or longer than w[i + 1, . . . , n].

Obviously, the algorithm terminates in finite steps.

4.3 Time Analysis and Query Complexity

For each symbol in the pattern, the algorithm makes at most n+1 comparisons,
where n is the length of the pattern. This implies that the total running time of
the algorithm is bounded by n(n + 1), that is O(n2).

It is easy to see that the query complexity is linear in the length of the pattern
since the algorithm does not ask more than n + 1 CQs.

5 Learning with CQs Versus Learning with MQs

The notion of CQ appeared as an extension of the well-known and intensively
studied MQ. The inspiration for introducing them comes from a real life setting
(which is the case for MQs also): when children make mistakes, the adults do not
reply by a simple ’yes’ or ’no’ (the agreement is actually implicit), but they also
provide them with a corrected word. Clearly, CQs can be thought as some more
informative MQs. So, it is only natural to compare the two learning settings
(learning with CQs vs. learning with MQs), and to analyze their expressive
power.

The first step in this direction has already been done: C. Tı̂rnăucă and S.
Kobayashi showed in [16] that learning with CQs is strictly more powerful than
learning with MQs, when we neglect the time complexity.

In this section we make a step further towards understanding the differences
and similarities between these two learning models by taking into consideration
the efficiency of the learning algorithms, that is, the time complexity. For this,
we need some further terminology.

Let C = (Li)i≥1 be an indexable class. We say that C is polynomially learnable
with MQs (or with CQs) if there exists a polynomial time algorithm which learns
C using MQs (CQs, respectively). We denote the collection of all indexable classes
C which are polynomially learnable with MQs by PolMemQ (PolCorQ is defined
similarly).

Recall that if the correction for a given string u is λ, then the string is in the
language, and the oracle’s answer would be ’yes’; in all other cases, the string is
not in the language, and the answer would be ’no’. Since the answer to any CQ
gives us also the answer to the corresponding MQ, it follows immediately that
the class PolMemQ is included in PolCorQ . We show that the inclusion is strict
using pattern languages as the separating case.
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Theorem 2. The class P is in PolCorQ\PolMemQ.

Proof. It is clear that P is in PolCorQ since Algorithm 2 is a polynomial time
algorithm which identifies any pattern language using COs (see Section 4).

Assume now that P is in PolMemQ , and consider the class of singletons S of
fixed length n over the alphabet Σ. Because every language L = {w} in S can
be written as a pattern language (L = L(w), where w is a pattern without any
variables), S is also in PolMemQ . But Angluin shows that, if l is the cardinality
of the alphabet, then any algorithm which learns S using MQs needs to ask at
least ln − 1 MQs [2], which leads to a contradiction. ��

Note that although P is not polynomially learnable with MQs, it is in MemQ
(see [14], page 266). However, there are classes of languages in PolCorQ which
cannot be learned at all (polynomially or not) using MQs, as we will see in the
sequel.

Theorem 3. The class k-Rev is in PolCorQ\MemQ.

Proof. Since Algorithm 1 learns any k-reversible language using CQs in polyno-
mial time (see Section 3), it follows immediately that k-Rev is in PolCorQ .

To show that k-Rev is not in MemQ , we use Mukouchi’s characterization of
the class MemQ in terms of pairs of definite finite tell-tales. A pair 〈T, F 〉 is said
to be a pair of definite finite tell-tales of Li if:

(1) Ti is a finite subset of Li, Fi is a finite subset of Σ∗\Li, and
(2) for all j ≥ 1, if Lj is consistent with the pair 〈T, F 〉 (that is, T ⊆ Lj and

F ⊆ Σ∗\Lj), then Lj = Li.

Mukouchi proves in [14] that an indexable class C = (Li)i≥1 belongs to MemQ
if and only if a pair of definite finite tell-tales of Li is uniformly computable for
any index i.

So, let us assume that k-Rev is in MemQ . Consider the alphabet Σ such
that {a, b} ⊆ Σ, and the language L = {a}. Clearly, L is in k-Rev for all
k ≥ 0 and hence a pair of definite finite tell-tales 〈T, F 〉 is computable for L.
This means that T ⊆ L and F is a finite set included in Σ∗\{a}. Let us take
m = max{|w| | w ∈ F} and the language L′ = {a, bamb}. It is clear that L′ is
in k-Rev for all k ≥ 0, and that it is consistent with 〈T, F 〉. Moreover, L′ �= L
which leads to a contradiction. ��

On the other hand, very simple classes of languages cannot be learned in poly-
nomial time using CQs. For example, if we take S̄ to be S̄ = (Lw)w∈Σ∗ , where
Lw = Σ∗\{w}, then any algorithm would require at least 1 + l + l2 + . . . + ln

CQs in order to learn Lw, where n = |w| and l = |Σ|.

6 Concluding Remarks

We have investigated the learnability of some well-known language classes in the
query learning setting. Figure 2 illustrates a synthesis of the results obtained.
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Fig. 2. CQ learning vs MQ learning

The class of pattern languages was known to be learnable with MQs. We gave
a polynomial time algorithm for learning P using CQs, and showed that they
cannot be efficiently learned with MQs. Moreover, we proved that k-reversible
languages are efficiently learnable with CQs, and not learnable (at all) with MQs.

For the future, we would like to see what happens with the learnability results
obtained so far when we change the correcting string. A possible direction could
be to choose as correction the closest string in the edit distance.
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Abstract. We consider the problem of learning and verifying hidden
graphs and their properties given query access to the graphs. We ana-
lyze various queries (edge detection, edge counting, shortest path), but
we focus mainly on edge counting queries. We give an algorithm for
learning graph partitions using O(n log n) edge counting queries. We in-
troduce a problem that has not been considered: verifying graphs with
edge counting queries, and give a randomized algorithm with error ε for
graph verification using O(log(1/ε)) edge counting queries. We examine
the current state of the art and add some original results for edge de-
tection and shortest path queries to give a more complete picture of the
relative power of these queries to learn various graph classes. Finally, we
relate our work to Freivalds’ ‘fingerprinting technique’ – a probabilistic
method for verifying that two matrices are equal by multiplying them
by random vectors.

1 Introduction

Graph learning appears in many different contexts. Suppose we are presented
with a circuit containing a set of chips on a board. We can test the resistance
between two chips with an ammeter. In as few measurements as possible, we
want to learn whether the entire circuit is connected, or whether we need to
power the components separately. This can be seen as a graph learning problem,
in which the chips are vertices of a hidden graph and the ammeter measurements
are queries into the graph, which tell whether a pair of vertices is connected by
a path. If we are given a strong enough ammeter to tell not only whether two
chips are connected, but also how far apart they are in the underlying circuit,
we get the stronger ‘shortest path’ queries.

In a different setting [3], testing which pairs of chemicals react in a solution
is modeled by ‘edge detection’ queries. Here, vertices correspond to chemicals,
edges designate chemical reactions, and a set of chemicals ‘reacts’ iff it induces
an edge. Applications of this model extend to bioinformatics, where learning a
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hidden matching [2] turns out to be useful in DNA sequencing. With each setup
we have different tools and target concepts to learn.

Our goal is to explore several graph-learning problems and queries. We con-
sider the following types of queries, defined on graphs G = (V, E):

– Edge detection query (ED): Check if there is edge between any two
vertices in S ⊆ V . This model has applications in genome sequencing and
was studied in [1,2,3,4,10].

– Edge counting query (EC): Return the number of edges in the subgraph
induced by S ⊆ V . This has extensive uses in bioinformatics and was studied
in [6,11].

– Shortest Path query (SP): Return the length of shortest path in G be-
tween two vertices; if no path exists, return ∞. This is the canonical model
in the evolutionary tree literature; see [12,13,14].

The second kind of task we consider is graph verification. Suppose we are
interested in learning the structure of some protein networks, and after months
of careful measurement, we complete our learning task. If we then find out there
is a small chance we made a mistake in our measurements or if we have reason
to believe our equipment may have been broken during experimentation, can
we verify the structures we’ve learned more efficiently than learning them over
again? More concretely, we are interested in how efficiently can we decide whether
a graph presented to us is indeed the “true graph.” This is a natural question
to ask, especially since real world data is often noisy, or we sometimes have
reason to mistrust results we are given. Every learning problem induces a new
verification problem.

We consider different classes of graphs for our learning and verification tasks.
The first class is arbitrary graphs, where there are no restrictions on the topol-
ogy of the graph. Any algorithm that learns or verifies an arbitrary graph can
also be used for more restricted settings. We also consider learning trees, where
we know the graph we are trying to learn is a tree, but we are not aware of its
topology. This is a natural setting for learning structures that we know do not
have underlying cycles, for example evolutionary trees. Finally, we consider the
problem of learning the partition of a graph into connected components. Here,
we do not restrict the underlying class of graphs, but instead relax the learning
problem. This is a natural question in settings where different partitions repre-
sent qualitative differences, for example in electrical networks, a power generator
in one partition cannot power any nodes outside its own partition. Note that this
also subsumes the natural question of whether or not a graph is connected.

In this paper we fill in some gaps in the literature on these problems and
introduce the verification task for these queries. We also introduce the problem
of learning partitions and present results in the EC query case. We then show
what problems remain open. After presenting a summary of the past work done
on these problems, we divide our results into two sections: Graph Learning and
Graph Verification.
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2 Previous Work

In one of the earliest works in graph discovery, Hein [12] tackles the problem of
learning a degree d restricted tree with SP queries. He describes an O(dn lg n)
algorithm that builds the tree by inserting one node at a time, in a carefully
chosen order under which each insertion takes O(d lg n) queries. Among other
results, King et al. [13] provide a matching lower bound by showing that solving
this problem requires solving multiple partition problems whose difficulty they
then analyze.

Angluin and Chen [3] show that O(lg n) adaptive ED queries per edge are
sufficient to learn an arbitrary hidden graph. Their algorithm repeatedly divides
the graph into independent subgraphs (i.e., it colors the graph), so as to eliminate
interference to ED queries from previously discovered edges, and uses a variant
of binary search to find new edges within each subgraph. It is worth noting that
this is not far from an information-theoretic lower bound of Ω(ε lg n) ED queries
per edge for the family of graphs with n2−ε edges. A later paper [4] generalizes
these results to hypergraphs using different techniques.

The work of Angluin and Chen is preceded by a few papers [1,2,10] that
tackle learning restricted families of graphs, such as stars, cliques, and matchings.
Alon et al. [2] provide lower and upper bounds of .32

(
n
2

)
and (1/2 + o(1))

(
n
2

)
respectively on learning a matching using nonadaptive ED queries, and a tight
bound of Θ(n lg n) ED queries in expectation if randomization is allowed. Alon
and Asodi [1] prove similar bounds for the classes of stars and cliques. Grebinski
and Kucherov [10] study reconstructing Hamiltonian paths with ED queries. It
turns out that many of these results are subsumed by those of [3] if we ignore
constant factors.

Grebinski and Kucherov [11] also study the problem of learning a graph using
EC queries and give tight bounds of Θ(dn) and Θ(n2/ lg n) nonadaptive queries
for d-degree-bounded and general graphs respectively. They also prove tight Θ(n)
bounds for learning trees. Their constructions make heavy use of separating
matrices. In [6], Grebinski and Kucherov present a survey on learning various
restricted cases of graphs, including Hamiltonian cycles, matchings, stars, and
k−degenerate graphs, with ED and EC queries.

In the graph verification setting, Beerliova et al. [5] consider the problem of
discovering and verifying networks using distance queries. In this setting that
models discovering nodes on the internet, the learner can query a vertex, and
the answer to the query is the set of all edges whose endpoints have different
graph-theoretic distance from the query vertex. They show there is no o(log n)
competitive algorithm unless P = NP .

Both the learning and verification tasks also bear some relation to the field of
Property Testing, where the object is to examine small parts of the adjacency
matrix of a graph to determine a global property of the graph. For a survey of
this area, see [9].
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3 Graph Learning

We first note that EC queries are at least as strong than ED queries and that
the problem of learning an arbitrary graph is at least as hard as learning trees or
partitions. Hence, in this paper, any lower bounds for stronger queries and easier
targets apply to weaker queries and harder target classes. Conversely, any upper
bounds we establish for weaker queries and harder problems apply for stronger
queries and more restricted classes.

We first establish that Θ(n2) SP and ED queries is essentially tight for learn-
ing arbitrary graphs and partitions.

Proposition 1. Ω(n2) SP queries are needed to learn the partition of a hidden
graph on n vertices.

Proof. We prove this by an adversarial argument; the adversary simply answers
‘∞’ (i.e., not connected) for all pairs of vertices i, j. If fewer than

(
n
2

)
queries are

made, then some pair i, j is not queried, and the algorithm cannot differentiate
between the graph with no edges and the graph with a single edge {i, j} (for
which SP(i, j) = 1). But these graphs have different partitions. �

If k is the number of components in a graph, there is an obvious algorithm that
does better for k < n, even without knowledge of k:

Proposition 2. O(nk) SP queries are sufficient to determine the partition of
a hidden graph on n vertices, if k is the number of components in the graph.

Proof. We use a simple iterative algorithm:

– Step 1: Place 1 in its own component.1

– Step i > 1: Query SP(i, w) for an item w from each existing component;
if SP(i, w) �= ∞, place i in the corresponding component and move to the
next step. Otherwise, create a new component containing i and move to the
next step.

Correctness is trivial. For complexity, note that there at most k components
at any step (since there are at most k components at phase n and components
are never destroyed); hence n vertices take at most nk queries. �

Proposition 3. Ω(n2) ED queries are needed to learn the partition of a hid-
den graph on n vertices.

Proof. Consider the class of graphs on n vertices consisting of two copies of
K n

2
, which we will call C1 and C2, and one possible edge between C1 and C2.

If there is an edge, all the vertices are in a single component; otherwise there
are two components. Any algorithm that learns the partition must distinguish
between the two cases. Observe that an ED query on a set S containing more
than one vertex from either C1 or C2 will not yield any information since an
1 We use numbers 1, 2, . . . , n to represent the vertices of the graph.
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edge is guaranteed to be present in S and any such query will be answered with
a ‘yes’. Hence, all informative queries must contain one vertex from C1 and one
vertex from C2. An adversary can keep on answering ‘no’ to all such queries,
and unless all possible pairs are checked, an edge may be present between C1

and C2. Hence, the algorithm cannot tell whether the graph has one component
or two until it asks all ≈ (n

2 )2 = Ω(n2) queries. �

It turns out that EC queries are considerably more powerful than ED queries
for this problem.

Proposition 4. Ω(n) EC queries are needed to learn the partition of a hidden
graph on n vertices.

Proof. We use an information-theoretic argument. The number of partitions of
an n element set is given by the Bell number Bn; according to de Bruijn [7]:

ln Bn = Ω(n ln n)

Since each EC query gives a lg(
(
n
2

)
) = 2 lg n bit answer, we need Ω( lg(Bn)

2 lg n ) =
Ω(n lg n

lg n ) = Ω(n) queries. �

Theorem 5. O(n lg n) EC queries are sufficient to learn the partition of a
hidden graph on n vertices.

Proof. Consider the following n−phase algorithm, in which the components of
G[1 . . . i] are determined in phase i.

– Phase 1: Set C = {c1} with c1 = {1}. C will keep track of the components
c1, c2, . . . known at any phase, and we will let C + v denote {v} ∪

⋃
ci∈C ci.

– Phase (i + 1): Let v = (i + 1), and query EC(C + v). If EC(C + v) = EC(C)
(i.e., there are no edges between v and C ), add a new component c = {v}
to C.
Otherwise, split C into roughly equal halves C1 and C2 and query EC(C1 +
v),EC(C2 + v). Pick any half h ∈ {1, 2} for which EC(Ch + v) > EC(Ch)
and repeat recursively until EC({cj} + v) > EC(cj) for a single component
cj ∈ C2. This implies that there are edges between cj and v; we will call cj

a live component.
Repeat on C \ {cj} to find another live component cj′ , if it exists; repeat
again on C \ {cj , cj′} and so on until no further live components remain (or
equivalently, no new edges are found). Remove all live components from C
and add a new component {v} ∪

⋃
live cj

cj .

Correctness is simple, by induction on the phase: we claim that C contains
the components of G[1 . . . i] at the end of phase i. This is trivial for i = 1.
For i > 1, suppose C = {c1, . . . , cm} at the beginning of phase i, and by the
inductive hypothesis C contains precisely the components of G[1 . . . (i − 1)]. The

2 Notice that this is essentially a binary search.
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components that do not have edges to v are unaffected by its introduction in
G[1 . . . i], and these are not changed by the algorithm. All other components are
connected to v and therefore to each other in G[1 . . . i]; but these are marked
‘live’ and subsequently merged into a single component at the end of the phase.
This completes the proof.

To analyze complexity, we use a “potential argument.” Let Δi denote the
increase in the number of components in C during phase i. There are three
cases:

– Δi = 1: There are no live components (v has no edges to any component in
C), and this is determined with a single EC(C + v) query.

– Δi = 0: There is exactly 1 live component (v connects to exactly one member
of C). Since there are at most n components to search, it takes O(lg n) queries
to find this component.

– Δi < 0: There are k > 1 live components with edges to v, bringing the
number of components down by k − 1.3 Finding each one takes O(lg n)
queries, for a total of O(k lg n) = O((−Δi + 1) lg n).

The total number of queries is
∑

i:Δi=1

1 +
∑

i:Δi=0

(lg n) +
∑

i:Δi<0

O((−Δi + 1) lg n)

The first two sums are bounded by O(n lg n) since there are n phases, and the
last one becomes

O(n lg n) + O(lg n)
∑

Δi<0

(−Δi).

But
∑

Δi<0(−Δi), the total decrease in the number of components, cannot be
greater than n since the total increase is bounded by n (one new component per
phase) and the final number of components is nonnegative. So the total number
of queries is O(n lg n), as desired.

To see that this analysis is tight, consider the case where G has exactly n/2
components, with Δi = 1 for i < n/2, Δi = 0 for i ≥ n/2. The first n/2 phases
take only O(n/2) queries, but the remaining n/2 take O(lg(n/2)) queries each,
for a total of O(n/2 lg(n/2) + n/2) = O(n lg n) queries. �

Proposition 6. O(|E| lg n) EC queries are sufficient to learn a hidden graph
on n vertices.

Proof. The algorithm of Angluin and Chen ([3]) achieves this since EC queries
are more powerful than ED queries, but we present a simpler method here that
exploits the counting ability of EC. The key observation is that we can learn
the degree of any vertex v in two queries:

d(v) = EC(V ) − EC(V \ {v})
3 The k components previously in C are replaced by a single component, hence Δi =

−(k − 1).
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We use this to find all of the neighbors of v, using a binary search similar to
that in the algorithm of theorem 5. Split V \ {v} into halves V1, V2 and query
EC(V1 +v),EC(V2 +v). Pick a half such that EC(Vi +v) > EC(Vi) and recurse
until EC(w + v) > 0 for some vertex w. This implies that w is a neighbor of v.
Repeat the procedure on V \{w, v} to find more neighbors, and so on, until d(v)
neighbors are found.

We can reconstruct the graph by finding the neighbors of each vertex; this
uses a total of

∑
v

d(v) lg n = lg n
∑

v

d(v) = 2|E| lg n = O(|E| lg n)

queries, as desired. �

It follows from the above proof that the degree sequence of a graph can be
computed in 2n queries, and consequently any property that is determined by
it takes only linear queries.

Proposition 7. Ω(n2) SP queries are needed to learn a hidden tree.

Proof. Consider a graph G on 2n + 1 vertices, which are of three kinds: a single
center vertex s, n ‘inner’ vertices x1 . . . xn, and n ‘outer’ vertices y1 . . . yn. The
center and inner vertices form a star (with edges {xi, s}) and the outer vertices
are matched with the inner vertices (for each yi there is a unique xji such that
{xji , yi} is an edge; no xji is repeated).

Suppose a learning algorithm knows that G is a quasi-star. There are only
three kinds of SP queries: SP(s, xi) = 1, SP(s, yi) = 2, and

SP(xi, yj) =
{

1 if {xi, yj} is an edge
3 otherwise

The only query that gives any information is the last kind, and the problem
reduces to that of learning a matching using ED queries, which we know by [2]
takes Ω(n2) queries. �

Table 1. Summary of results. n denotes the number of vertices, |E| the number of
edges, d the degree restriction, and k the number of components

Query partition graph tree
ED Θ(n2) Θ(|E| lg n), Θ(n2)[3] Θ(n lg n)

EC O(n lg n) O(|E| lg n), O( n2

lg n
), O(dn)[3,11] Θ(n)

Ω(n) Ω(dn), Ω( n2

lg n
)[11]

SP Θ(nk) Θ(n2) Θ(n2), Θ(dn lg n) [12,13]
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Table 1 shows the known bounds for the problems we consider. We can see
that tight asymptotic bounds exist for all of these learning problems, except for
learning partitions with EC.

We note that learning a tree becomes significantly easier when the degrees of
its vertices are restricted, and in many cases, knowing a bound on the degree of
a graph can help with the learning problem.

4 Graph Verification

In this setting, a verifier is presented a graph G(V, E) and asked to check whether
it is the same as a hidden graph G∗(V, E∗), given query access to G∗. In this
section, we explore the complexity of graph verification using various queries.
Mainly, we show that while verifying unrestricted graphs is hard using SP and
ED queries, there is a fast randomized algorithm that uses EC queries.

Proposition 8. Verifying an arbitrary graph takes Θ(n2) SP queries and Θ(n2)
ED queries.

Proof. Consider the problem of verifying a clique, when the hidden graph is a
clique with some edge (u, v) removed, and the verifier knows this. SP(u′, v′) = 2
if and only if u′ = u and v′ = v. A simple adversarial argument shows that Ω(n2)
queries are necessary. Similarly, for ED queries, let S = {u, v}. The answer to
query ED(U), where |U | �= 2 is predetermined. Otherwise, ED(U) = 0 if and
only if U = S. There are

(
n
2

)
choices for S such that |S| = 2; hence Ω(n2) are

needed. For both SP and ED queries the O(n2) algorithm of checking all pairs
of vertices is obvious. �

Given that SP queries are most often considered in evolutionary tree learning,
we also consider the problem of verifying a tree with SP queries. In this setting,
the verifier knows the hidden graph is a tree and is presented with a tree to
verify.

Proposition 9. Verifying a tree takes Θ(n) SP queries.

Proof. Consider the problem of verifying a path graph (from the class of path
graphs). This reduces to verifying that a given ordering of the vertices is correct.
If the answers to each query are consistent with the graph to be verified, each
query verifies at most two vertices in the ordering. An adversary can choose
whether or not to swap any pair of vertices that have not been queried and
either stay consistent with the input path graph or not until at least n/2 SP
queries have been performed. Conversely, we can verify each edge individually
in n − 1 queries. �

We now consider the problem of verifying a graph with EC queries. Here, we
see that EC queries are quite powerful for verifying arbitrary graphs.

Theorem 10. Any graph can be verified by a randomized algorithm using 1
EC query, with success probability 1/4.
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Proof. We define EC(V, G) to be the query EC(V ) on graph G. The algorithm
is simple. We let Q be a random subset of vertices of V , with each vertex chosen
independently with probability 1

2 . We query EC(Q, G∗) and compute EC(Q, G).
If the two quantities are not equal, we say G and G∗ are different. Otherwise we
say they are the same. We will show that if G = G∗ the algorithm always returns
the correct answer, and otherwise gives the correct answer with probability at
least 1

4 .
Consider the symmetric difference S = (V, EΔE∗). Let A = {(u, v) ∈ E \E∗ :

u, v ∈ Q} and B = {(u, v) ∈ E∗ \ E : u, v ∈ Q}. If G = G∗ then |A| = |B| = 0
and we are always right in saying the graphs are identical; otherwise G �= G∗

and EΔE∗ �= ∅, so by the following lemma |EΔE∗| = |A| + |B| is odd with
probability 1

4 . But this immediately implies that |A| �= |B|, as desired. �

Lemma 11. Let G(V, E) be a graph with at least one edge. Let G′(V ′, E′) be
the subgraph induced by taking each vertex in G independently with probability
1
2 . If G is non-empty, the probability that |E′| is odd is at least 1

4 .

Proof. Fix an ordering v1 . . . vn so that (vn−1, vn) ∈ E. Select each of v1 . . . vn−2

independently with probability 1/2, and let H ′ be the subgraph induced by the
selected vertices. Suppose the probability that H ′ contains an odd number of
edges (i.e., parity(H ′) = 1) is p.

Let i (resp. j) be the number of edges between vn−1 and H ′ (resp. vn and
H ′). Consider two cases:

– i ≡ j mod 2 If both are chosen an odd number of edges is added to H ′ and
parity(H ′) = 1 − parity(G′). This happens with probability 1/4.

– i �≡ j mod 2. Assume w.l.o.g. that i is odd and j is even. Then, if vn−1 is
chosen and vn is not chosen, an odd number of edges is added to H ′, and
again parity(H ′) = 1 − parity(G′). This happens with probability 1/4.

On the other hand, if neither vn−1 nor vn is chosen then parity(G′) =
parity(H ′), and this happens with probability 1/4. So upon revealing the last
two vertices, the parity of H ′ is flipped with probability at least 1/4 and not
flipped with probability at least 1/4, independently of what happens in H ′. Let
F denote the event that it is flipped (i.e., that parity(H ′) �= parity(G′). Then,

P[parity(G′) = 1] = P[parity(G′) = 1|parity(H ′) = 1]P[parity(H ′) = 1]
+ P[parity(G′) = 1|parity(H ′) = 0]P[parity(H ′) = 0]

= P[F |parity(H ′) = 1]p + P[F |parity(H ′) = 0](1 − p)

= P[F ]p + P[F ](1 − p) by independence
≥ 1/4(p + 1 − p) = 1/4

as desired. �

This finishes the proof of Theorem 10. Since this result has 1-sided error, we
can easily boost the 1

4 probability to any constant, and Corollary 12 follows
immediately.
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Corollary 12. Any graph can be verified by a randomized algorithm with error
ε using O(log(1

ε )) EC queries.

4.1 Relation to Fingerprinting

Suppose A and B are n × n matrices over a field F. It is known that if A �= B,
then for a vector v ∈ {0, 1}n chosen uniformly at random we have

P[Av �= Bv] ≥ 1/2.

This is Freivalds’ fingerprinting technique [8]. It is was originally developed as
a technique for verifying matrix multiplications, and can be used for testing for
equality of any two matrices.

An easy extension of this method says that for vectors v, w ∈ {0, 1}n chosen
independently uniformally at random, if A �= B we have

P[wT Av �= wT Bv] = P[wT Av �= wT Bv|Av = Bv]P[Av = Bv]

+ P[wT Av �= wT Bv|Av �= Bv]P[Av �= Bv]

≥ 0 × P[Av = Bv] +
1
2

× 1
2

=
1
4

This bears a strong resemblance to graph verification with EC queries. Let A
and B be the incidence matrices of G and G∗, respectively. Then an EC query
Q corresponds to multiplication on the left and right by the characteristic vector
of Q, and the algorithm becomes: choose v ∈ {0, 1}n uniformly at random and
return ‘same’ iff vT Av = vT Bv. By Theorem 10 if A �= B then Pr[vT Av �=
vT Bv] ≥ 1

4 .
This raises a natural question. For arbitrary n × n matrices A and B over a

field, if A �= B, then for a vector v ∈ {0, 1}n chosen uniformly at random, is
P[vT Av �= vT Bv] ≥ 1/4 (or some other constant > 0)?

This turns out not to be the case. Consider the two matrices

A =

⎛
⎝

0 1 0
0 0 1
1 0 0

⎞
⎠ B =

⎛
⎝

0 0 1
1 0 0
0 1 0

⎞
⎠

A �= B, but it is not hard to check that for any vector v ∈ {0, 1}n, vT Av =
vT Bv. In fact, this holds true for adjacency matrices of ‘opposite’ directed cycles
on > 3 vertices. A graph theoretic interpretation of this fact is that if the number
of directed edges on any induced subset of the two opposite directed cycles is
the same, then an EC query will always return the same answer for the two
different cycles. Needless to say, this property is not limited to the adjacency
matrices of directed cycles: in fact, it holds for any two matrices A and B such
that A + AT = B + BT , since

vT (A + AT )v = vT Av + vT AT v = vT Av + (vT Av)T = 2vT Av

for all v, so that vT Av = vT Bv for all v.
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Hence, we know that standard fingerprinting techniques do not imply The-
orem 10. Furthermore, the proof to Theorem 10 generalizes easily to weighted
graphs and a more general form of EC queries, where the answer to the query
is the sum of the weights of its induced edges. Since any symmetric matrix can
be viewed as an adjacency matrix of an undirected graph, we have the following
fingerprinting technique for symmetric matrices.

Theorem 13. Let A and B be n × n symmetric matrices over a field such that
A �= B,4 then for v chosen uniformally at random from v ∈ {0, 1}n, Pr[vT Av �=
vT Bv] ≥ 1

4 .

Proof. Let C = A − B �= 0, and note that vT Av �= vT Bv ⇐⇒ vT Cv �= 0.
Identify C with the weighted graph G = (V, E), where V = {v1 . . . vn} and
E = {(u, v) : C(u, v) �= 0}, and wt(u, v) = C(u, v). We proceed as in the proof
of Lemma 11. Fix v1 . . . vn so that wt(vn−1, vn) �= 0, and let H ′ be as before.
Define:

wt(H) =
∑

(u,v)∈H

wt(u, v); wt(w, H) =
∑

(w,v)∈G,v∈H

wt(w, v).

The first quantity is a generalization of parity, the second of the number of edges
from a vertex to a subgraph. Let T = wt(vn−1, H

′) + wt(vn, H ′) + wt(vn−1, vn),
and consider two cases:

– T = 0. Since wt(vn−1, vn) �= 0, we know that at least one of the other terms
must be nonzero. Assume w.l.o.g. that this is wt(vn, H ′). So choosing vn but
not vn−1 is will make wt(G′) �= wt(H ′), and this happens with probability
1/4.

– T �= 0. Choosing both vn and vn−1 sets wt(G′) = wt(H ′)+T �= wt(H ′). This
happens with probability 1/4.

Again, we choose neither vertex with probability 1/4, in which case wt(G′) =
wt(H ′). Finally,

P[wt(G′) �= 0] = P[wt(G′) �= 0|wt(H ′) �= 0]P[wt(H ′) �= 0]
+ P[wt(G′) �= 0|wt(H ′) = 0]P[wt(H ′) = 0]

≥ P[wt(G′) = wt(H ′)|wt(H ′) �= 0]P[wt(H ′) �= 0]
+ P[wt(G′) �= wt(H ′)|wt(H ′) = 0]P[wt(H ′) = 0]

= P[wt(G′) = wt(H ′)]P[wt(H ′) �= 0]
+ P[wt(G′) �= wt(H ′)]P[wt(H ′) = 0] by independence

≥ 1/4(P[wt(H ′) = 0] + P[wt(H ′) �= 0]) = 1/4

as desired. �
4 Or, more generally, any matrices A and B with A + AT �= B + BT .
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5 Discussion

There is a tantalizing asymptotic gap of O(lg n) in our bounds for EC queries for
learning the partition of the graph. It would also be interesting to know under
which, if any, query models it is easier to learn the number of components than
the partition itself. There is also the open question whether for general graphs,
the O(|E| lg n) bound can be improved to O(E) for EC queries. This is the open
question asked by Bouvel et. al. [6] on whether a hidden graph of average degree
d can be learned with O(dn) EC queries.5

Some other problems left to be considered are learning and verification prob-
lems for other restricted classes of graphs. For example, of theoretical interest
is the problem of verifying trees with ED queries. There is an obvious O(n)
brute-force algorithm, but it may be possible to do better. Also, other classes of
graphs have been studied in the literature (see the Section 2) including Hamilto-
nian paths, matchings, stars, and cliques. It may be revealing to see the power of
the queries considered herein for learning and verifying these restricted classes
of graphs.

It would also be useful to look at this problem from a more economic perspec-
tive. Since edge counting queries are strictly more powerful than edge detecting
queries, they ought to be more expensive in some natural framework. Taking
costs into account and allowing learners to be able to choose queries with the
goal of both learning the graph and minimizing cost should be an interesting
research direction.

Finally, our work shows that graph verification is possible even for many
classes of directed graphs. It would be interesting to redefine these queries for
directed graphs and explore their power.
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Abstract. A linear graph pattern is a labeled graph such that its ver-
tices have constant labels and its edges have either constant or mutually
distinct variable labels. An edge having a variable label is called a variable
and can be replaced with an arbitrary labeled graph. Let GP(C) be the
set of all linear graph patterns having a structural feature C like “having
a tree structure”, “having a two-terminal series parallel graph structure”
and so on. The graph language GLC(g) of a linear graph pattern g in
GP(C) is the set of all labeled graphs obtained from g by substituting
arbitrary labeled graphs having the structural feature C to all variables
in g. In this paper, for any set T∗ of m linear graph patterns in GP(C), we
present a query learning algorithm for finding a set S of linear graph pat-
terns in GP(C) with

⋃
g∈T∗

GLC(g) =
⋃

f∈S GLC(f) in polynomial time

using at most m + 1 equivalence queries and O(m(n + n2)) restricted
subset queries, where n is the maximum number of edges of counterex-
amples, if the number of labels of edges is infinite. Next we show that
finite sets of graph languages generated by linear graph patterns having
tree structures or two-terminal series parallel graph structures are not
learnable in polynomial time using restricted equivalence, membership
and subset queries.

1 Introduction

Many electronic data become accessible on Internet. Electronic data such as
HTML/XML files, bioinformatics and chemical compounds have graph struc-
tures but have no rigid structure. Hence, such data are called graph structured
data. Especially, graph structured data such as HTML/XML files having tree
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structures are called tree structured data. In the fields of data mining and knowl-
edge discovery, many researchers have developed techniques based on machine
learning for analyzing such graph structured data. If we can construct oracles
which answer any query in practical time, we can design efficient and effec-
tive data mining tools based on query learning algorithms using such oracles.
The purpose of our work is to present fundamental learning algorithms for data
mining from graph structured data. In this paper, we consider polynomial time
learnabilities of finite unions of graph patterns having structured variables, which
are knowledge representations for graph structured data, in exact learning model
of Angluin [2].

A linear graph pattern is defined as a labeled graph such that its vertices have
constant labels and its edges have either constant or mutually distinct variable
labels. An edge (u, v) having a variable label is called a variable, denoted by
〈u, v〉, and can be replaced with an arbitrary labeled graph. For example, in
Fig. 1, we give a linear graph pattern g having two variables 〈u1, u2〉 and 〈v1, v2〉
with variable labels x and y, respectively. In the figures of this paper, a variable
is represented by a box with lines to its elements. The numbers at these lines
indicate the order of the vertices of which a variable consists. The symbol inside
a box shows the label of the variable. We can obtain a new linear graph pattern
from a linear graph pattern g by substituting an arbitrary linear graph pattern
to a variable in g. For example, in Fig. 1, the labeled graph G3 is obtained from
the linear graph pattern g by replacing the variables 〈u1, u2〉 and 〈v1, v2〉 of g
with the labeled graphs G1 and G2, respectively.

Web documents like HTML/XML files are expressed by labeled graphs having
tree structures. In applications for electrical network and scheduling problems,
input data are formalized by labeled graphs having two-terminal series parallel
(TTSP for short) graph structures. In order to represent structural features of
graph structured data such as “having tree structures” and “having TTSP graph
structures”, we define simple Formal Graph System, which is a restricted class
of Formal Graph System (FGS for short) presented by Uchida et al. [15]. FGS
is a kind of logic programming systems which directly deals with graph patterns
instead of terms in first-order logic. A finite set of clauses on FGS is called
an FGS program. As examples of simple FGS programs, we give a simple FGS
program OT in Fig. 2 generating all ordered rooted trees and a simple FGS
program TTSP in Fig. 3 generating all TTSP graphs such as F1, F2, F3, F4,
and F5 in Fig. 3, where TTSP graphs are constructed by recursively applying
“series” and “parallel” operations (see [5]). For a simple FGS program Γ , let
GP(Γ ) be the set of all linear graph patterns obtained from any labeled graph
generated by Γ by replacing some edges in it with mutually distinct variables,
that is, GP(Γ ) contains all linear graph patterns with the graph structural feature
“generated by Γ”. The graph language GLΓ (g) of a linear graph pattern g in
GP(Γ ) is the set of all labeled graphs whose graph structures are generated by Γ
and which are obtained from g by substituting arbitrary labeled graphs whose
graph structures are generated by Γ to all variables in g.
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g G1 G2 G3

Fig. 1. Linear graph pattern g and labeled graphs G1, G2, G3 over Λ. In the figures in
this paper, a variable is represented by a box with lines to its elements. The numbers
at these lines indicate the order of the vertices of which a variable consists. The symbol
inside a box shows the label of the variable. In this figure, we omit the labels of vertices
except two labels s, t.
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Fig. 2. Simple FGS program OT . The symbol o over internal vertices indicates that
the vertex has ordered children. The broken arrow shows that the order of the leaf
labeled with t is less than that of the leaf labeled with l.

In exact learning model of Angluin [2], a learning algorithm accesses to oracles,
which answer specific kinds of queries, and collects information about a target.
Let Γ be a simple FGS program and T∗ a subset of GP(Γ ). A learning algorithm
is said to exactly identify the target set T∗ if it outputs a set of linear graph
patterns S ⊆ GP(Γ ) such that the union of graph languages of all linear graph
patterns in S is equal to that in T∗ and halts, after it asks a certain number of
queries to oracles. In this paper, for a simple FGS program Γ and any set T∗ of
m linear graph patterns in GP(Γ ), we present a query learning algorithm which
exactly identifies T∗ in polynomial time using at most m + 1 equivalence queries
and at most m(n + rn2) restricted subset queries, where n is the maximum
number of edges of counterexamples and r is the number of clauses in Γ (i.e., r
is a constant), if the number of labels of edges is infinite. Firstly, the algorithm
gets a counterexample hi (1 ≤ i ≤ m) as an answer of an equivalence query
for an empty set, that is, hi is a labeled graph generated by some linear graph
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Fig. 3. Simple FGS program TTSP and TTSP graphs F1, F2, F3, F4, F5. In this
figure, we omit the labels of edges and vertices except two labels s and t of vertices.

pattern gi in T∗. Secondly, the algorithm recursively reconstructs hi by replacing
edges of hi with variables or subgraphs of hi generated by Γ with variables
and by asking a certain number of restricted subset queries. Next, asking an
equivalence query, the algorithm gets a new counterexample hj (1 ≤ j �= i ≤ m)
if the equivalence oracle does not answer “yes”. Finally, the algorithm halts, if
the algorithm exactly identifies T∗.

Next, we show that, by asking a certain number of restricted equivalence,
membership and subset queries, finite sets of linear graph patterns in GP(OT )
and GP(TTSP) are not learnable in polynomial time.

In [10], we already showed that any finite set of m linear graph patterns in
GP(OT ) is exactly identifiable at most m + 1 equivalence queries and using at
most 2mn2 restricted subset queries, where n is the maximum number of edges
in counterexamples, if the number of labels of edges is infinite. The results of
this paper are improvements and extensions of the results in [10]. Moreover,
in [11], we considered polynomial time learnabilities of finite unions of non-
linear graph patterns having ordered tree structures, that is, ordered rooted
tree patterns in which variables are allowed to have the same variable labels.
In [11], we showed that any finite set of m graph patterns having ordered
tree structures is exactly identifiable using O(m2n4 + 1) superset queries and
O(m + 1) restricted equivalence queries, where n is the maximum number of
edges in counterexamples, if the number of labels of edges is infinite.

As for related works, the work [9,16] studied the learnabilities of graph struc-
tured patterns in the framework of polynomial time inductive inference. Also
the work [13,14] showed the classes of linear graph patterns in GP(OT ) and lin-
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ear graph patterns in GP(TTSP) are polynomial time inductively inferable from
positive data, respectively. As an application, the work [12] proposed a tag tree
pattern, which is an extension of a linear graph pattern in GP(OT ), and gave
a data mining method from tree structured data. As for other related works,
the works [1,3] show the exact learnability of tree structured patterns, which
are incomparable to linear graph patterns having tree structures, in the exact
learning model.

This paper is organized as follows: In Section 2, we formally define a linear
graph pattern as a labeled graph having structural variables, and then define its
graph language. Moreover, we briefly introduce a exact learning model treated in
this paper. In Section 3, we consider the learnabilities of finite unions of graph
languages of linear graph patterns in the framework of exact learning model.
In Section 4, we consider the insufficiency of learning of finite unions of some
graph languages of linear graph patterns in exact learning model. In Section 5,
we conclude this work and give future works.

2 Preliminaries

We introduced term graphs and term graph languages in [15] in order to develop
efficient graph algorithms for grammatically defined graph classes. In this sec-
tion, based on term graphs and term graph languages, we define labeled graph
patterns as graphs having structural variables, and then introduce their graph
languages. For a set S, |S| denotes the number of elements of S.

2.1 Linear Graph Patterns

Let Λ and X be infinite alphabets whose elements are called constant labels and
variable labels, respectively. We assume that Λ ∩ X = ∅. Let G = (V, E) be a
directed labeled graph consisting of a set V of vertices and a set E of edges such
that G has no loop but multiple edges are allowed. We denote by ψG a vertex
labeling assigning a constant label in Λ to each vertex in V and by ϕG an edge
labeling assigning either a constant label or a variable label in Λ ∪ X to each
edge in E. A graph pattern over Λ ∪ X obtained from G is defined as a triplet
g = (Vg, Eg, Hg) where Vg = V , Eg = {e ∈ E | ϕG(e) ∈ Λ} and Hg = E − Eg.
An element of Hg is called a variable. We note that ψg(u) = ψG(u) for each
vertex u ∈ Vg, ϕg(e) = ϕG(e) ∈ Λ for each edge e ∈ Eg and ϕg(h) = ϕG(h) ∈ X
for each variable h ∈ Hg. We use notations (u, v) and 〈s, t〉 to represent an
edge in Eg and a variable in Hg consisting of two vertices u, v and s, t in Vg,
respectively. Here after, since the background graph G can be easily found from
a triplet g = (Vg , Eg, Hg), we omit the description of the background graph
G. A graph pattern g over Λ ∪ X is said to be linear if all variables in g have
mutually distinct variable labels in X . In particular, a graph pattern over Λ∪X
with no variable is regarded as a (standard) labeled graph over Λ. We denote the
set of all linear graph patterns over Λ ∪ X by GPΛ∪X and the set of all labeled
graphs over Λ by GΛ. In this paper, we deal with only linear graph patterns over
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Λ∪X , and then we call a linear graph pattern over Λ∪X a graph pattern, simply.
A graph pattern having no edge is said to be simple. A graph pattern g is said
to be primitive if g is a simple graph pattern consisting of two vertices and only
one variable, (i.e. |Vg| = 2, |Eg| = 0 and |Hg| = 1, where g = (Vg , Eg, Hg)).

Two graph patterns f = (Vf , Ef , Hf ) and g = (Vg, Eg, Hg) are said to
be isomorphic, denoted by f ≡ g, if there is a bijection π from Vf to Vg, such
that (1) (u, v) ∈ Ef if and only if (π(u), π(v)) ∈ Eg, (2) ψf (u) = ψg(π(u)) for
each vertex u ∈ Vf and ϕf ((u, v)) = ϕg((π(u), π(v))) for each edge (u, v) ∈ Ef ,
and (3) 〈u, v〉 ∈ Hf if and only if 〈π(u), π(v)〉 ∈ Hg. A bijection π satisfying
(1)–(3) is called an isomorphism from f to g. Two isomorphic graph patterns
are considered to be identical.

Let f and g be graph patterns having at least two vertices. Let σ = [u, v]
be a pair of distinct vertices in g. The form x := [g, σ] is called a binding for
a variable label x in X . A new graph pattern, denoted by f{x := [g, σ]}, is
obtained by applying the binding x := [g, σ] to f in the following way: Let
e = 〈s, t〉 be a variable in f with the variable label x, i.e., ϕf (e) = x. Let g′

be a copy of g. And let u′ and v′ be the vertices of g′ corresponding to u and
v of g, respectively. For the variable e = 〈s, t〉, we attach g′ to f by removing
the variable e from f and identifying the vertices s and t with the vertices u′

and v′ of g′, respectively. For two bindings x := [g, [ug, vg]] and x := [f, [uf , vf ]],
we write (x := [g, [ug, vg]]) ≡ (x := [f, [uf , vf ]]) if there exists an isomorphism
π from g to f such that π(ug) = uf and π(vg) = vf . A substitution θ is a finite
set of bindings {x1 := [g1, σ1], x2 := [g2, σ2], . . . , xn := [gn, σn]}, where xi’s are
mutually distinct variable labels in X . For a graph pattern f and a substitution
θ, we denote by fθ the graph pattern obtained from f and θ by applying all
bindings in θ to f simultaneously. For example, for the graph pattern g in Fig. 1
and labeled graphs G1, G2, G3 in Fig. 1, G3 is isomorphic to the graph pattern
gθ obtained by applying θ = {x := [G1, [w1

1 , w1
2]], y := [G2, [w2

1 , w2
2 ]]} to g

(i.e., G3 ≡ gθ).
For graph patterns f and g, we write f � g if there exists a substitution θ

such that f ≡ gθ. Especially, we write f ≺ g if f � g and g �� f . For example,
for the graph patterns G3 and g given in Fig. 1, we can see that G3 ≺ g because
of G3 ≡ g{x := [G1, [w1

1 , w1
2 ]], y := [G2, [w2

1 , w2
2 ]]} and g �� G3.

2.2 Graph Languages over Λ

The purpose of this subsection is to define graph languages over an alphabet Λ
of infinitely many constant labels (i.e., |Λ| = ∞). First of all, in order to repre-
sent structural features of graph structured data like “having tree structures”,
“having TTSP graph structures” and so on, we introduce simple Formal Graph
System, which is a restricted class of Formal Graph System (FGS for short) pre-
sented by Uchida et al. [15]. FGS is a kind of logic programming systems which
directly deals with graph patterns instead of terms in first-order logic.

Let Π be a set of unary predicate symbols and Σ a finite subset of Λ. An
atom is an expression of the form p(g), where p is a unary predicate symbol in
Π and g is a graph pattern over Σ ∪ X . For two atoms p(g) and q(f), we write
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Fig. 4. Simple FGS program UT

p(g) ≡ q(f) if p = q and g ≡ f hold. Let A, B1, B2, . . . , Bn be atoms, where
n ≥ 0. Then, a graph rewriting rule is a clause of the form A ← B1, B2, . . . , Bn.
We call the atom A the head and the right part B1, B2, . . . , Bn the body of the
graph rewriting rule. For a graph pattern g = (Vg , Eg, Hg) and a variable
label x ∈ X , the number of variables of g labeled with x is denoted by o(g, x)
(i.e., o(g, x) = |{h ∈ Hg | ϕg(h) = x}|). Because any graph pattern is assumed
to be linear in this paper, we have o(g, x) = 1 if x appears in g, otherwise
o(g, x) = 0. A graph rewriting rule p(g) ← q1(f1), q2(f2), . . . , qn(fn) is said
to be simple if the following conditions (1)-(3) hold: (1) fi is primitive for any
i = 1, 2, . . . , n, (2) g consists of two vertices and the edge between them if n = 0,
otherwise g is simple, and (3) for any variable x ∈ X , o(g, x) = 1 if and only if
o(f1, x) + o(f2, x) + · · · + o(fn, x) = 1. A FGS program is a finite set of graph
rewriting rules. An FGS program Γ is said to be simple if any graph rewriting
rule in Γ is simple. For example, we give some simple FGS programs in Figs. 2–5.

We define substitutions for graph rewriting rules in a similar way to those in
logic programming [7]. For an atom p(g), a graph rewriting rule A ← B1, . . . , Bn

and a substitution θ, we define p(g)θ = p(gθ) and (A ← B1, . . . , Bn)θ = Aθ ←
B1θ, . . . , Bnθ. Let Γ be an FGS program. The relation Γ � C for a graph
rewriting rule C is inductively defined as follows.

(1) If C ∈ Γ , then Γ � C.
(2) If Γ � C, then Γ � Cθ for any substitution θ.
(3) If Γ � A ← B1, . . . , Bi, . . . , Bn and Γ � Bi ← C1, . . . , Cm,

then Γ � A ← B1, . . . , Bi−1, C1, . . . , Cm, Bi+1, . . . , Bn.

For an FGS program Γ and its predicate symbol p in Π , GL(Γ, p) denotes the
subset {g ∈ GΣ | Γ � p(g) ←} of GΣ . We say that a subset L ⊆ GΣ is an FGS
language if there exists an FGS program Γ and its predicate symbol p such
that L = GL(Γ, p). The FGS language GL(Γ, p) is simply denoted by GL(Γ )
if we need not clarify the predicate symbol p. For example, for the simple FGS
programs OT in Fig. 2, TTSP in Fig. 3, UT in Fig. 4 and MT = UT ∪ OT ∪ R
(here, R in Fig. 5), the FGS languages GL(OT , q), GL(TTSP , p), GL(UT , p)
and GL(MT , r) of OT , TTSP , UT and MT are the sets of all rooted ordered
trees, all TTSP graphs (see [5]), all rooted unordered trees, and all rooted mixed
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Fig. 5. Simple FGS program R
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Fig. 6. The set ELΛ∪X (g) of all graph patterns over Λ ∪ X obtained from the labeled
graph g over {a} in case of Λ = {a, b}

trees each of whose internal vertices has ordered or unordered children (see [14]),
respectively.

Next, we construct graph languages over an infinite alphabet Λ from FGS
languages over Σ. For a labeled graph g ∈ GΣ , ELΛ∪X (g) and ELΛ(g) denote the
sets of all graph patterns over Λ ∪ X and all labeled graphs over Λ which are
obtained from g by ignoring all edge labels of g and relabeling all edges with
arbitrary labels in Λ ∪ X and Λ, respectively. When |Λ| = ∞, this indicates
that ELΛ∪X (g) and ELΛ(g) are infinite subsets of GPΛ∪X and GΛ, respectively. In
Fig. 6, as an example in case of Λ = {a, b}, we give the set ELΛ∪X (g) of all graph
patterns over Λ∪X obtained from the labeled graph g over {a}. For a simple FGS
program Γ , let GPΛ∪X (Γ ) =

⋃
g∈GL(Γ ) ELΛ∪X (g) and GΛ(Γ ) =

⋃
g∈GL(Γ ) ELΛ(g).

We denote all the finite subsets of GPΛ∪X (Γ ) by FGPΛ∪X (Γ ). For a simple FGS
program Γ and a graph pattern g ∈ GPΛ∪X (Γ ), let LΛ(Γ, g) = {f ∈ GΛ(Γ ) |
f � g} ⊆ GΛ and we call LΛ(Γ, g) the graph language of Γ and g. For a simple
FGS program Γ and a finite subset S of GPΛ∪X (Γ ), we define LΛ(Γ, S) as the
union of graph languages of Γ and g ∈ S with respect to S (i.e., LΛ(Γ, S) =⋃

g∈S LΛ(Γ, g)) and we call it the graph language over Γ and S. In particular,
we assume that LΛ(Γ, φ) = φ.
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Let Γ be a simple FGS program, g a graph pattern in GPΛ∪X (Γ ) and S in
FGPΛ∪X (Γ ). Then, we consider the following property: LΛ(Γ, g) ⊆ LΛ(Γ, f) for
some f ∈ S if and only if LΛ(Γ, g) ⊆ LΛ(Γ, S). This property is important in
the learning of unions of graph languages and called compactness, which was
proposed in [4]. The following lemma shows that the graph language over a
simple FGS program Γ and S ∈ FGPΛ∪X (Γ ) has compactness. We can prove the
following lemma by slightly modifying the proof of Lemma 1 in [10].

Lemma 1. Let Γ be a simple FGS program, S in FGPΛ∪X (Γ ) and |Λ| infinite.
Then, for a graph pattern g in GPΛ∪X (Γ ), LΛ(Γ, g) ⊆ LΛ(Γ, S) if and only if
there exists a graph pattern f in S with g � f .

In this paper, we consider polynomial time learnabilities of the class of graph
languages for a simple FGS program Γ and a finite subset S of GPΛ∪X (Γ ). We
remark that we do not consider the learnabilities of FGS languages.

2.3 Learning Model

Let Γ be a simple FGS program. In what follows, let T∗ ⊆ GPΛ∪X (Γ ) (i.e.,
T∗ ∈ FGPΛ∪X (Γ )) denotes a finite set of graph patterns to be identified, and we
say that T∗ is a target. In the exact learning model via queries due to Angluin [2],
learning algorithms can access to oracles that will answer queries about the
target T∗. In this paper, we consider the following queries.

1. Membership query: The input is a labeled graph g ∈ GΛ(Γ ). The output is
yes if g ∈ LΛ(Γ, T∗), otherwise no. The oracle which answers the membership
query is called a membership oralce.

2. Subset query and Restricted subset query: The input of both queries
is a finite subset S of GPΛ∪X (Γ ). The output of a subset query is yes if
LΛ(Γ, S) ⊆ LΛ(Γ, T∗), otherwise a labeled graph, called a counterexample,
in (LΛ(Γ, S) − LΛ(Γ, T∗)). The oracle which answers the subset query is
called a subset oracle. The output of a restricted subset query is yes if
LΛ(Γ, S) ⊆ LΛ(Γ, T∗), otherwise no. The oracle which answers the restricted
subset query is called a restricted subset oracle.

3. Equivalence query and Restricted equivalence query: The input of
both queries is a finite subset S of GPΛ∪X (Γ ). The output of a equivalence
query is yes if LΛ(Γ, S) = LΛ(Γ, T∗), otherwise a labeled graph, called a
counterexample, in (LΛ(Γ, S) ∪ LΛ(Γ, T∗)) − (LΛ(Γ, S) ∩ LΛ(Γ, T∗)). The or-
acle which answers the equivalence query is called a equivalence oracle. The
output of a restricted equivalence query is yes if LΛ(Γ, S) = LΛ(Γ, T∗), oth-
erwise no. The oracle which answers the restricted equivalence query is called
a restricted equivalence oracle.

A learning algorithm A is said to exactly identify a target T∗ in polynomial time if
A outputs a set S ∈ FGPΛ∪X (Γ ) in polynomial time with LΛ(Γ, S) = LΛ(Γ, T∗).
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Algorithm Learn Union

Assumption: A simple FGS program Γ and a target T∗ ∈ FGPΛ∪X (Γ ).
Given: Oracles for EquivT∗ and rSubT∗ for T∗.
Output: A set S ∈ FGPΛ∪X (Γ ) with LΛ(Γ, S) = LΛ(Γ, T∗).

begin
1. S := ∅;
2. while EquivT∗(S) �= yes do
3. begin
4. Let g be a counterexample;
5. foreach edge e of g do
6. if rSubT∗({g/{e}}) = yes then g := g/{e};
7. repeat
8. foreach f ∈ {g′ | g �Γ g′} do
9. if rSubT∗({f}) = yes then begin g := f ; break end
10. until g does not change;
11. S := S ∪ {g}
12. end;
13. output S
end.

Fig. 7. Algorithm Learn Union

3 Learning Finite Unions of Graph Languages

In this section, for a fixed simple FGS program Γ , we consider the learnabilities
of finite unions of graph languages over Γ and S ∈ FGPΛ∪X (Γ ) in the frame-
work of exact learning model. For a simple FGS program Γ and a target T∗ in
FGPΛ∪X (Γ ), we present a polynomial time learning algorithm Learn Union in
Fig. 7 which outputs a set S in FGPΛ∪X (Γ ) such that LΛ(Γ, S) = LΛ(Γ, T∗)
holds, by asking several queries to a restricted subset oracle, denoted by rSubT∗ ,
and an equivalence oracle, denoted by EquivT∗ . The formal definitions of nota-
tions used in Learn Union are stated later. We assume that |Λ| is infinite.

First, we consider the internal foreach-loop at lines 5 and 6 in the algorithm
Learn Union. For two graph patterns g = (Vg , Eg, Hg) and f in GPΛ∪X , we
write g � f if f is isomorphic to a graph pattern g′ obtained from g by replacing
an edge (u, v) ∈ Eg with a new variable 〈u, v〉 labeled with a new variable label in
X (i.e., g′ = (Vg , Eg −{(u, v)}, Hg ∪{〈u, v〉})). That is, f is a generalized graph
pattern of g such that g � f . In order to show the replaced edge (u, v) explicitly,
f is denoted by g/{(u, v)}. Let �∗ be the reflexive and transitive closure of �

on GPΛ∪X . Then, we have the following lemma.

Lemma 2. For graph patterns g, g1, g2 ∈ GPΛ∪X , if g �∗ g1 and g �∗ g2, then
there exists a graph pattern g′ ∈ GPΛ∪X such that g1 �∗ g′ and g2 �∗ g′ hold.

Proof. Since g�∗ g1, there exists a subset I1 = {eg1,1, eg1,2, . . . , eg1,k} of Eg such
that g/{eg1,1}/{eg1,2}/ . . . /{eg1,k} ≡ g1 holds, where Eg is the set of edges in
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g g1 g2 h1 h2

Fig. 8. Graph patterns g, g1, g2, h1, h2

g. Moreover, there exists also a subset I2 = {eg2,1, eg2,2, . . . , eg2,r} of Eg such
that g/{eg2,1}/{eg2,2}/ . . . /{eg2,r} ≡ g2 holds. For a set I1 ∪I2 = {e1, e2, . . . , es}
(s ≤ k + r) and g′ ≡ g/{e1}/{e2}/ . . . /{es}, we have g1 �∗ g′ and g2 �∗ g′. �

This lemma shows that the binary relation � over GPΛ∪X has the Church-Rosser
property. We can easily prove the following lemma.

Lemma 3. For two graph patterns g, f in GPΛ∪X , we have g � f if g �∗ f .

For a graph pattern g given after executing the internal foreach-loop at lines 5
and 6 in the algorithm Learn Union, from Lemma 2, we can see that LΛ(Γ, g) ⊆
LΛ(Γ, T∗) and LΛ(Γ, g/{e}) �⊆ LΛ(Γ, T∗) for any edge e in g. Then, by modifying
the proof of Lemma 3 in [10], we can prove the following lemma.

Lemma 4. Let Γ be a simple FGS program, g = (Vg, Eg, Hg) a graph pat-
tern in GPΛ∪X (Γ ) and S in FGPΛ∪X (Γ ). If LΛ(Γ, g) ⊆ LΛ(Γ, S) and LΛ(Γ, g/
{e}) �⊆ LΛ(Γ, S) for any edge e ∈ Eg, then there exists a graph pattern g′ =
(Vg′ , Eg′ , Hg′) in S such that g � g′ and |Eg| = |Eg′ | hold.

Second, we consider the internal repeat-loop between lines 7 and 10 in the algo-
rithm Learn Union. Let Γ be a simple FGS program. Let g be a graph pattern
in GPΛ∪X (Γ ), g′ a graph pattern in GPΛ∪X and x a variable label appearing in
g′. We write g �Γ g′ if there exists a graph rewriting rule D in Γ such that
g ≡ g′{x := [h, σ]}, that is, if g is a graph pattern obtained from g′ by replacing
the variable having the variable label x with h, where h is a simple graph pattern
appearing in the head of D. For example, for graph patterns g, g1, g2 given in
Fig. 8, we have g1 �TTSP g and g2 �TTSP g (i.e., g1 ≡ g{x := [h1, (u1, u2)]} and
g2 ≡ g{x := [h2, (u1, u2)]}), from the second and the third graph rewriting rules
in TTSP , where h1, h2 are simple graph patterns given in Fig. 8 and TTSP is
the simple FGS program in Fig. 3.

For graph patterns g, g′ ∈ GPΛ∪X (Γ ), if g �Γ g′ then g′ is a generalized graph
pattern of g such that g � g′. Therefore we have the following lemma.

Lemma 5. Let Γ be a simple FGS program. For two graph patterns g, g′ in
GPΛ∪X (Γ ), if g �Γ g′ holds then g � g′ holds.
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For a graph pattern g given after executing the internal repeat-loop between lines
7 and 10 in the algorithm Learn Union, we can see that LΛ(Γ, f) �⊆ LΛ(Γ, T∗)
for any graph pattern f ∈ GPΛ∪X (Γ ) with g �Γ f .

Lemma 6. Let Γ be a simple FGS program. Let g = (Vg, Eg, Hg) be a graph
pattern in GPΛ∪X (Γ ) and S a set in FGPΛ∪X (Γ ) such that there exists a graph
pattern g′ = (Vg′ , Eg′ , Hg′) in S with g � g′ and |Eg| = |Eg′ |. Then, if
LΛ(Γ, f) �⊆ LΛ(Γ, S) for any graph pattern f ∈ GPΛ∪X (Γ ) with g �Γ f , then
g ≡ g′ holds.

Proof. Since g � g′ holds, there exists a substitution θ = {x1 := [f1, σ1], x2 :=
[f2, σ2], . . . , xn := [fn, σn]} such that g ≡ g′θ holds. Since |Eg| = |Eg′ |, |Hg| ≥
|Hg′ | holds. We assume that |Hg| > |Hg′ | holds. Then, we can see that there
exists a binding x� := [f�, σ�] in θ such that |Vf�

| ≥ 2, |Ef�
| = 0 and |Hf�

| ≥ 2
hold, where f� = (Vf�

, Ef�
, Hf�

). Hence, since g′ ∈ GPΛ∪X (Γ ), there exists a
substitution θ′ such that g ≡ g′θ �Γ g′θ′ ∈ GPΛ∪X (Γ ) holds. Since from Lemma
5, g � g′θ′ � g′ ∈ S holds, we have LΛ(L, g) ⊆ LΛ(L, g′θ′) ⊆ LΛ(L, g′). This is
a contradiction. Thus, we can see that |Hg| = |Hg′ |. We have g ≡ g′. �

Let Γ be a simple FGS program. For two sets P, Q ∈ FGPΛ∪X (Γ ), if there exists
a graph pattern f ∈ Q such that f � g for any g ∈ P , we write P � Q. If P � Q
and Q �� P , then we write P � Q. Then, from the above lemmas, the following
theorem holds.

Theorem 1. Let Γ be a simple FGS program. The algorithm Learn Union in
Fig. 7 exactly identifies any set T∗ ∈ FGPΛ∪X (Γ ) in polynomial time using at
most m+1 equivalence queries and at most m(n+rn2) restricted subset queries,
where m = |T∗|, n is the maximum number of edges of counterexamples and
r = |Γ |, if the number of labels of edges is infinite.

Proof. We consider the i-th iteration from the line 2 to the line 12 of the al-
gorithm Learn Union, where i ≥ 1. Let Si be a hypothesis given to EquivT∗
at the line 2 of Learn Union and gi = (Vi, Ei, Hi) a counterexample given at
the line 4 of Learn Union. Assume that S0 = ∅. In a similar way to Lemmas
6 and 7 in [10], from Lemmas 1, 3, 4 and 6, we can prove that for every i ≥ 1,
gi ∈ LΛ(Γ, T∗), Si−1 � T∗ and Si−1 � Si hold. Hence, we can see that the algo-
rithm Learn Union correctly outputs a set S such that LΛ(Γ, S) = LΛ(Γ, T∗),
and that Learn Union terminates in polynomial time.

Next, we consider the numbers of restricted subset queries and equivalence
queries. In the loop of the lines 5-6, Learn Union uses at most |Ei| restricted
subset queries. Moreover, the loop of the lines 7-10 uses at most |Γ | × |Ei|2
restricted subset queries. The while-loop from the line 2 to the line 12 is repeated
at most |T∗| times. Therefore, Learn Union uses at most m(n+ rn2) restricted
subset queries and at most m + 1 equivalence queries, where m = |T∗|, n the
maximum number of edges of counterexamples and r = |Γ |, if the number of
labels of edges is infinite. �
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Let FMT = FGPΛ∪X (MT ), FUT = FGPΛ∪X (UT ), FOT = FGPΛ∪X (OT ) and
FTTSP = FGPΛ∪X (TTSP). From the definitions of MT and �MT , we can reduce
the number of restricted subset queries as the following corollary.

Corollary 1. Any set T∗ ∈ FMT is exactly identified in polynomial time us-
ing at most m + 1 equivalence queries and at most m(n + 3n2) restricted subset
queries, where m = |T∗| and n is the maximum number of edges of counterex-
amples, if the number of labels of edges is infinite.

Moreover, since GPΛ∪X (UT ), GPΛ∪X (OT ) and GPΛ∪X (TTSP) are closed with
respect to the binary relations �UT , �OT and �TTSP , respectively, we have the
following corollary.

Corollary 2. The algorithm Learn Union in Fig. 7 exactly identifies any fi-
nite set T∗ of either FUT , FOT or FTTSP in polynomial time using at most
m+1 equivalence queries and at most m(n+n2) restricted subset queries, where
m = |T∗| and n is the maximum number of edges of counterexamples, if the
number of labels of edges is infinite.

4 Hardness Results on the Learnability

In this section, we show the insufficiency of learning of FUT , FOT , FMT and
FTTSP in exact learning model. For a graph pattern g = (Vg, Eg, Hg), the sum
of numbers of edges and variables in g is called the size of g, i.e., |g| = |Eg|+|Hg|.

Lemma 7. (László Lovász [8]) Let Wn be the number of all rooted unordered
unlabeled trees of size n. Then, 2n+1 < Wn < 4n+1, where n ≥ 5.

From the above lemma, if |Λ| ≥ 1, then the number of rooted unordered (ordered,
mixed) trees of size n is greater than 2n+1. The following lemma is known to
show the insufficiency of learning in exact learning model.

Lemma 8. (Angluin [2]) Suppose the hypothesis space contains a class of dis-
tinct sets L1, . . . , LN . If there exists a set L∩ in the hypothesis space such that
for any pair of distinct indices i, j (1 ≤ i, j ≤ N), L∩ = Li ∩ Lj, then any
algorithm that exactly identifies each of the hypotheses Li using restricted equiv-
alence, membership, and subset queries must make at least N − 1 queries in the
worst case.

By Lemmas 7 and 8, we have the following Theorems 2 and 3.

Theorem 2. Let F be either FUT , FOT or FMT and Fn the collection of all
sets in F each of which contains only graph patterns of size n. Then, any learn-
ing algorithm that exactly identifies all sets in Fn using restricted equivalence,
membership and subset queries must make greater than 2n+1 queries in the worst
case, where |Λ| ≥ 1 and n ≥ 5.

Proof. We prove the insufficiently of learning for FUT . In a similar way to it,
we can prove the insufficiently of learning for FOT and FMT . We denote by



Exact Learning of Finite Unions of Graph Patterns from Queries 311

Sn the class of singleton sets of rooted unordered trees of size n. The class Sn

is a subclass of FUT and for any L and L′ in Sn, L ∩ L′ = ∅. Since the empty
set LΛ(UT , ∅) = ∅ is a hypothesis in FUT , by Lemmas 7 and 8, any learning
algorithm that exactly identifies all the finite sets of rooted unordered term
trees of size n using restricted equivalence, membership and subset queries must
make more than 2n+1 queries in the worst case, even when |Λ| = 1. �

Theorem 3. Any learning algorithm that exactly identifies all sets in FTTSP
each of which contains only graph patterns of size n, using restricted equivalence,
membership and subset queries, must make greater than 2

n
2 queries in the worst

case, where |Λ| ≥ 1 and n ≥ 10.

5 Conclusion

We have considered polynomial time learnabilities of finite unions of graph struc-
tured datasets in exact learning model of Angluin [2]. In order to represent struc-
tural features of graph structured data, we have given a linear graph pattern with
structural features such as “having tree structures” and “having TTSP graph
structures” by using Formal Graph System given in [15]. Then, for a simple FGS
program Γ , we have shown that any set T∗ of m linear graph patterns is exactly
identified in polynomial time using at most m+1 equivalence queries and at most
m(n + rn2) restricted subset queries, where n is the maximum number of edges
of counterexamples and r = |Γ |, if the number of labels of edges is infinite. Next,
as a negative result, we show that finite sets of linear graph patterns having tree
structures and two-terminal series parallel graph structures are not learnable in
polynomial time using restricted equivalence, membership and subset queries.

As future works, we will consider polynomial time learnabilities of finite unions
of graph patterns having structural features generated by non-simple FGS pro-
grams such as planar graphs, balanced binary trees, complete graphs. We con-
clude by summarizing our results and remained open problems in Table 1.

Table 1. Our results and remained open problems

polynomial time
exact learning

polynomial time inductive inference
from positive data

FGPΛ∪X (Γ )
FTTSP
FMT Yes[This Work] Open
FUT
FOT Yes[10] Yes[6] (for 2 unions)

FGPΛ∪X (Δ) Open Open
FEXGPΛ∪X (OT ) Yes[11] Open
FEXGPΛ∪X (Δ) Open Open

Here, Γ and Δ are a simple FGS program and a (non-simple) FGS program,
respectively. FEXGPΛ∪X (OT ) denotes the finite sets of (non-linear) graph pat-
terns with ordered tree structures generated by the simple FGS program OT .
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Abstract. Although polynomials have proven to be useful tools to tailor
generic kernels to context of specific applications, little was known about
generic rules for tuning parameters (i.e. coefficients) to engineer new pos-
itive semidefinite kernels. This not only may hinder intensive exploita-
tion of the flexibility of the kernel method, but also may cause misuse
of indefinite kernels. Our main theorem presents a sufficient condition
on polynomials such that applying the polynomials to known positive
semidefinite kernels results in positive semidefinite kernels. The condi-
tion is very simple and therefore has a wide range of applications. In
addition, in the case of degree 1, it is a necessary condition as well. We
also prove the effectiveness of our theorem by showing three corollaries
to it: the first one is a generalization of the polynomial kernels, while
the second one presents a way to extend the principal-angle kernels, the
trace kernels, and the determinant kernels. The third corollary shows
corrected sufficient conditions for the codon-improved kernels and the
weighted-degree kernels with shifts to be positive semidefinite.

1 Introduction

To exploit the flexibility of the kernel method, it is critical that sufficiently
wide latitude is allowed in selecting kernel functions. On the other hand, using
polynomials has proven effective to tailor known basic kernels (we call them
underlying kernels) to context of specific applications (e.g. polynomial kernels
[1], principal-angle and determinant kernels [2,3], codon-improved and weighted-
degree-with-shift kernels [4,5]; See Sect. 2.1).

Little, however, was known about generic methodologies on the use of polyno-
mials for this purpose, more specifically, about conditions on polynomials which
lead the resulting kernels to be positive semidefinite. Positive semidefiniteness of
a kernel K(x, y) indicates the property that arbitrary Gram matrices of K(x, y)
are positive semidefinite (i.e. the matrices include no negative eigenvalues; See
also Definition 3) — for an arbitrary set of data points {x1, . . . , xn} � X , the
corresponding Gram matrix is defined as the n×n matrix [K(xi, xj)]ni,j=1. Also,
if X is a finite set, this property is equivalent to the property that there exists a
mapping (feature decomposition) Φ : X −→ R

N such that K(x, y) = Φ(x)TΦ(y).
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Positive semidefinite kernels are also known as reproducing kernels and Mercer’s
kernels.

Lack of general rules to discriminate between fertile polynomials that always
generate positive semidefinite kernels and the other infertile polynomials is a
serious problem, since positive semidefiniteness is a fundamental premise for
many kernel-based learning machines to work properly (e.g. SVM [1]).

The present paper addresses this problem, and presents a sufficient condition
for fertile polynomials (Theorem 1). Moreover, the condition turns out to be
a necessary condition in the case of degree 1. This implies that the condition
is generic. As additional collateral evidences of the generality of the condition,
we employ a few known positive semidefinite kernels as examples, which are all
derived using polynomials from other positive semidefinite underlying kernels,
and show that they are special cases of our main theorem.

2 Problem Identification and Our Contributions

2.1 A Review of Polynomial-Based Composition of Kernels

To start with, we show three examples of polynomial-based composition of
kernels.

Polynomial (Poly) kernels. The polynomial kernels are given in the form
of (k(x, y) + c)d for a positive semidefinite underlying kernel k(x, y), and are
positive semidefinite if the constant c is non-negative (e.g. [1]). Polynomial ker-
nels have proven useful for two main reasons – (1) a separating hypersurface1

in a feature space of the underlying kernel is mapped to a hyperplane in a
higher-dimensional feature space so that learning machines (e.g. SVM) can dis-
cover it; (2) polynomial kernels reflect the correlation of tuples of features of
the underlying kernel [4]. Polynomial kernels can be generalized to the form
of K(x, y) =

∑d
i=0 cik(x, y)i with arbitrary ci ≥ 0 without harming positive

semidefiniteness.

Principal-angle (PA) kernels and determinant (Det) kernels. When a
data point is represented as a set of vectors, the principal angles of the linear
subspaces spanned by the representing vectors of two data points have proven
to be effective measures for similarity between the data points (e.g. [6]). Wolf et
al. [2] showed that principal angles can be computed using the kernel trick, and
introduced the positive semidefinite kernels defined by (1).

K(x, y) =
(
det[QX

TQY ]
)2

=
k∏

i=1

cos2 θi (1)

In (1), x and y are tuples (x(1), . . . , x(D)) and (y(1), . . . , y(D)) in X D, θi de-
notes the i-th principal angle between the column spaces of the matrices X =
1 In this paper, by a hypersurface, we mean a subspace of R

N defined by an algebraic
equation whose degree is higher than 1.
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[Φ(x(1)), . . . , Φ(x(D))] and Y = [Φ(y(1)), . . . , Φ(y(D))], QX and QY are matrices
obtained by the QR decomposition of X and Y , and Φ : X −→ R

n is a feature de-
composition of an underlying kernel k(x, y) (i.e. k(x(i), y(j)) = Φ(x(i))

T
Φ(y(j))).

Also, Zhou [3] introduced the determinant kernels for matrix-type data points.
Positive semidefiniteness of the principal-angle kernels and the determinant

kernels is reduced to that of K(x, y) defined as follows.

K(x, y) = det

⎡
⎢⎣

k(x(1), y(1)) . . . k(x(1), y(D))
...

. . .
...

k(x(D), y(1)) . . . k(x(D), y(D))

⎤
⎥⎦

=
∑

σ∈SD

sgn(σ)
D∏

i=1

k(x(i), y(σ(i))) (2)

K(x, y) is definitely a polynomial in k(x(i), y(j)), and its positive semidefiniteness
can be proven by Binet-Cauchy Theorem [2,3,7].

Codon-improved (CI) kernels and weighted-degree-with-shift (WDwS)
kernels. The codon-improved kernels [4] and their generalization, namely the
weighted-degree-with-shift kernels [5], are similar to the spectrum kernels [8] in
that they count matching substrings between a pair of strings, but are different
in that matches are weighted according to their positional information. Although
these kernels are defined using polynomials, different from the examples seen so
far, their positive semidefiniteness is not proven in a straightforward manner. In
fact, appropriate selection of the coefficients of the polynomials is required to
maintain positive semidefiniteness, and both [4] and [5] made mistakes in this
regard.

For example, the codon-improved kernels [4] are designed so as to exploit the
a priori knowledge “a coding sequence (CDS) shifted by three nucleotides still
looks like CDS.” In fact, in addition to the matches of substrings starting at the
same position, they count substrings starting at the positions differ exactly by 3.
A precise definition is given as follows. For sequences of nucleotides x and y, we
let xp (resp. yp) denote the nucleotide at position p in x (resp. y). Then, kp(x, y)
is defined as follows.

kp(x, y) =
�∑

j=−�

wjδ(xp+j , yp+j) (3)

In (3), wj ’s are non-negative weights, and δ(xp+j , yp+j) is Kronecker’s delta:
δ(xp+j , yp+j) is 1, if xp+j and yp+j represent the same nucleotide, and it is
0, otherwise. When T denotes the shift operator that chops off the leading 3
nucleotides, the window score winp(x, y) at position p, and the codon-improved
kernel K(x, y) are respectively defined by (4) and (5), where w̄ is another non-
negative weight.

winp(x, y) = {kp(x, y) + w̄ (kp(Tx, y) + kp(x, T y))}d1 (4)
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K(x, y) =

⎛
⎝

L−�∑
p=�+1

winp(x, y)

⎞
⎠

d2

(5)

Although [4] claims that the codon-improved kernels are unconditionally pos-
itive semidefinite, the fact is that the weights should be chosen appropriately.
We will illustrate this by a simplified example. Assume wj = 1 (j = −�, . . . , �),
d1 = 1, � = 3q and p = 3q + 1. When x and y are the strings of length 6q + 1
defined as follows, winp(x, x) = winp(y, y) = 6q + 1 and winp(x, y) = 4q + 4w̄q
hold.

x = ATGCGT ATGCGT . . . ATGCGT︸ ︷︷ ︸
6q

A

y = CTGAGT CTGAGT . . . CTGAGT︸ ︷︷ ︸
6q

C

Therefore, the corresponding Gram matrix is positive semidefinite, if, and only
if, 1 ≥ 2(2w̄ − 1)q holds. In particular, w̄ ≤ 1

2 proves necessary for winp(x, y) to
be positive semidefinite regardless of q.

On the other hand, [5] claims that w̄ ≤ 1
2 is a sufficient condition for the

codon-improved kernels to be positive semidefinite, but the proof presented in
[5] holds true only for cases of wj ≥ wj−3 for j = −� + 3, . . . , �. In Sect. 6.3,

we will present w̄ ≤ min
{

wj

wj+wj−3

∣∣j = −� + 3, . . . , �
}

as a corrected sufficient
condition.

2.2 Problem Identification

Table 1 gives the list of the polynomials used in the above examples. Of the
listed polynomials, that for the polynomial kernels is in the most generic form.
Nevertheless, it is still specific for two reasons: (1) it is simply univariate; (2)
it cannot include negative coefficients. In fact, the examples other than the
polynomial kernels use multivariate polynomials, and the polynomials for the
principal-angle and determinant kernels include negative coefficients.

Thus, the polynomial kernels cannot be a generic formula to discriminate
between the fertile polynomials that generate positive semidefinite kernels and
the other infertile ones. Eventually, little was known about such formulas, and

Table 1. Polynomials in Examples

Kernels Variables Polynomial

Poly ξ
∑d

j=1
cjξ

i, cj ≥ 0

PA, Det {ξi,j}D
i,j=1

∑
σ∈SD

sgn(σ)
∏D

i=1
ξi,σ(i)

CI, WDwS {ξi,j}L+3
i,j=1

[∑�

j=−�
wj{ξp+j,p+j + w̄(ξp+j,p+j+3 + ξp+j+3,p+j)}

]d1
,

w̄ ≤ min
{

wj

wj+wj−3

∣∣j = −� + 3, . . . , �
}
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the lack not only would restrict the ranges of polynomials that can be used to
engineer new kernels, but also could cause misuse of indefinite kernels.

The present paper addresses this problem, and, in fact, presents a strong
sufficient condition for the fertile polynomials.

2.3 Our Contributions

Below, the contributions of the present paper are summarized.

– Four settings are known for deriving polynomial-based kernels from underly-
ing kernels (Sect. 3.1). We first show that one of the types is truly the most
expressive — the other types are reduced to it, but the converse does not
hold. Then, we define polynomial summaries under the setting (Definition 1
in Sect. 3.2).

– Our main theorem (Theorem 1 in Sect. 4.2) presents a sufficient condition
on polynomials whose polynomial summaries result in positive semidefinite
kernels regardless of underlying positive semidefinite kernels. In the case of
degree 1, the condition is also a necessary one, in the sense that, if a given
linear polynomial p does not meet the condition, there exists an underlying
positive semidefinite kernel k(x, y) such that the p-summary of k(x, y) is not
positive semidefinite (Sect. 5.4).

– We introduce three corollaries to Theorem 1. The first two generalize the
polynomial kernels and the determinant kernels (Sect. 6.1 and 6.2). The
third one presents a corrected sufficient condition for the codon-improved
kernels and the weighted-degree-with-shift kernels to be positive semidefinite
(Sect. 6.3).

3 Polynomial Summaries

In this section, we first pursue the most expressive setting for polynomial-based
composition of kernels, and then define polynomial summaries under the setting.

3.1 Relation Among the Known Settings

In the literature, we see four settings for polynomial-based kernels according to
the answers to the following questions (Type A to D, and also see Table 2).

1. Are the polynomial to be used to derive K(x, y) univariate or multivariate?
This question is equivalent to the question whether the domain X of K(x, y)
is identical with the domain of the underlying kernel(s) or a non-trivial
cartesian product of the domain(s) of the underlying kernel(s)?

2. Is the resulting kernel K(x, y) derived from a single underlying kernel?

Type A. A univariate polynomial p(ξ) is applied to a single underlying kernel
k : X × X → R. K(x, y) is simply defined as p(k(x, y)) (e.g. the polynomial
kernels [1]).
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Type B. A multivariate polynomial p in the D2 variables ξij for i, j = 1, . . . , D
is applied to a single underlying kernel k : X∗ × X∗ → R. The domain X is
defined as X D∗ , and K((x1, . . . , xD), (y1, . . . , yD)) is obtained by substituting
k(xi, yj) for ξij . (e.g. the principal-angle kernels [2] and the determinant
kernels [7,3]).

Type C. A multivariate polynomial p in the D variables ξd for d = 1, . . . , D is
applied to multiple underlying kernels kd : X × X → R. K(x, y) is obtained
by substituting kd(x, y) for ξd (e.g. [1, Proposition 3.12]).

Type D. A multivariate polynomial p in the D variables ξd for d = 1, . . . , D is
applied to multiple underlying kernels k′

d : Xd × Xd → R. The domain X is
defined as X1 × · · · × XD, and K((x1, . . . , xD), (y1, . . . , yD)) is obtained by
substituting k′

d(xd, yd) for ξd (e.g. Haussler’s R-convolution kernels [9]).

Table 2. Types of polynomial-based kernels

Type Domain of K Polynomial Underlying kernel(s) Substitution

A X p(ξ) k : X × X → R ξ = k(x, y)
B X D

∗ p(ξ11, . . . , ξij , . . . , ξDD) k : X∗ × X∗ → R ξij = k(xi, yj)
C X p(ξ1, . . . , ξD) {kd : X × X → R}d=1,...,D ξd = kd(x, y)
D X1 × · · · × XD p(ξ1, . . . , ξD) {k′

d : Xd × Xd → R}d=1,...D ξd = k′
d(xd, yd)

Type A is the special case of the other types where D = 1. Type D is the
special case of Type C where X = X1 × · · ·×XD and kd((x1, . . . , xD)) = k′

d(xd).
Also, Type B, when p only includes the variables ξii, is a special case of Type
D where X1 = · · · = XD = X∗ and k1 = · · · = kD = k. Furthermore, Lemma 1
asserts that Type C is a special case of Type B.

Lemma 1. For an arbitrary family of positive semidefinite kernels {kd : X ×
X → R}d=1,...,D, there exist a set X∗, a positive semidefinite kernel k : X∗×X∗ →
R and an inclusion mapping i : X → X D

∗ such that kd(x, y) = k(id(x), id(y)) for
i(x) = (i1(x), . . . , iD(x)) and i(y) = (i1(y), . . . , iD(y)).

Proof. Let X∗ be X × {1, 2, . . . , D}. When k : X∗ × X∗ → R is defined so that
(6) holds, it is obvious that k is positive semidefinite.

k((x, a), (y, b)) =

{
kd(x, y) if a = b = d,
0 otherwise.

(6)

We obtain the assertion by defining i : X → X D
∗ by i(x) = ((x, 1), . . . , (x, D)).

��

For a polynomial p(ξ1, . . . , ξD), (7) follows from Lemma 1. Therefore, if
p(k(x1, y1), . . . , k(xD, yD)) are positive semidefinite for arbitrary positive semi-
definite k, so are p(k1(x, y), . . . , kD(x, y)) for arbitrary positive semidefinite kd.
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p(k1(x, y), . . . , kD(x, y)) = p(k(i1(x), i1(y)), . . . , k(iD(x), iD(y))) (7)

Thus, the set of fertile polynomials of the form p(ξ1, . . . , ξD) that produce
positive semidefinite K(x, y) is identical regardless of the type of setting, and,
therefore, the setting of Type B is truly more expressive than those of the other
types, since it allows D2-variate polynomials p(ξ11, . . . , ξij , . . . , ξDD).

3.2 Definition of Polynomial Summaries

We define polynomial summaries assuming the setting of Type B.

Definition 1. Let p(ξ11, ξ12, . . . , ξij , . . . , ξDD) be a real polynomial in the D2

variables of {ξij | i, j = 1, . . . , D}. The p-summary of an underlying kernel
k : X × X −→ R is the kernel p[k] : X D × X D −→ R defined as below.

p[k]((x1, . . . , xD), (y1, . . . , yD))
= p(k(x1, y1), k(x1, y2), . . . , k(xi, yj), . . . , k(xD, yD))

Example 1. The kernel of (2) is a polynomial summary with respect to the poly-
nomial p as below.

p(ξ11, . . . , ξDD) =
∑

σ∈SD

sgn(σ)
D∏

i=1

ξiσ(i)

If the underlying kernel k is positive semidefinite, the p-summary for k is positive
semidefinite (e.g. [7,3]). ��

Example 2. Define fp as follows.

fp(ξ11, . . . , ξDD) =

⎡
⎣

�∑
j=−�

wj {ξp+j,p+j + w̄(ξp+j,p+j+3 + ξp+j+3,p+j)}

⎤
⎦

d1

Then, the window score winp(x, y) of (4) is the fp-summary of Kronecker’s delta
δ(ξ, η) defined over the alphabet {A, T, G, C}. Although δ(ξ, η) is positive semidef-
inite, it is necessary to choose appropriate wj and w̄ to make the resulting fp-
summary positive semidefinite (Sect. 2.1 and 6.3). ��

As seen in Example 2, even if an underlying kernel k is positive semidefinite,
p-summaries of k may or may not be positive semidefinite dependent on choice
of polynomials p. Thus, the following question naturally arises.

What is a condition on p for the p-summaries to be positive semidefinite?

Theorem 1 answers to this question.
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4 Main Theorem and a Plot of the Proof

4.1 Coefficient Matrices of Polynomials

Assume that a polynomial p of degree d in the D2 variables ξ11, . . . , ξij , . . . , ξDD

is given the following representation for Δ = {1, . . . , Δ}.

p = c∅,∅ +
d∑

δ=1

∑
(k1,...,kδ)∈Δδ

∑
(l1,...,lδ)∈Δδ

c(k1,...,kδ),(l1,...,lδ) · ξk1l1ξk2l2 · · · ξkδ lδ

Then, we define a Dd+1−1
D−1 -dimensional square matrix C, and refer to it as a

coefficient matrix of p, whose rows and columns are indexed by vectors i ∈
Δ[0..d] = {∅} ∪

⋃d
δ=1 Δδ and whose (i, j)-element is ci,j , if |i| = |j|, and 0,

otherwise. When deg p ≥ 2 and D ≥ 2, there exist more than one coefficient
matrices for the same p. For example, Cc are all coefficient matrices for the
polynomial p = ξ11ξ22 = cξ11ξ22 + (1 − c)ξ22ξ11 for arbitrary c.

Cc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 c 0 0
0 0 0 0 0 1 − c 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

– The 1st row (column) corresponds to the
empty vector ∅.

– The 2nd and 3rd rows (columns) respec-
tively correspond to the vectors (1) and
(2).

– The (2i+j+1)-th row (column) for (i, j) ∈
{1, 2}2 corresponds to the vector (i, j).

4.2 Statement of the Main Theorem

Theorem 1. Let p be a real polynomial in the D2 variables of {ξij | (i, j) ∈
{1, . . . , D}2}. If p is given a representation whose coefficient matrix is positive
semidefinite, then the p-summary p[k] of an arbitrary underlying kernel k is
positive semidefinite, if k is positive semidefinite.

4.3 Key Lemma

Before we sketch a plot of the proof of Theorem 1, we first introduce Lemma 2,
which will play a key role in the proof. The proof of Lemma 2 is given in 5.2.

Let X ij be m-dimensional square matrices parameterized by (i, j) = {1, . . . ,
n}2, and let X denote the derived mn-dimensional square matrix [X ij ]i,j=1,...,n:
the (mi + k, mj + l)-element of X , denoted by X ij

kl , is defined to be the (k, l)-
element of X ij . For m- and n-dimensional vector spaces V and W , the matrix
X represents a linear endomorphism of V ⊗ W .

Definition 2. For an m-dimensional square matrix A, the n-dimensional square
matrix

[
tr(ATX ij)

]
i,j=1,...,n

=
[∑m

k=1

∑m
l=1 AklX

ij
kl

]
i,j=1,...,n

is called the A-

linear summary matrix of X, and is denoted by smryA(X).
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Lemma 2. For an m-dimensional real matrix A, the following are equivalent to
each other.

(1) A is positive semidefinite.
(2) The linear summary matrix smryA(X) is positive semidefinite for an arbi-

trary mn-dimensional positive semidefinite matrix X.

4.4 A Plot of the Proof of Theorem 1

Now, we are ready to sketch a plot of the proof of Theorem 1. The objective
of the proof is to show that arbitrary Gram matrices G of p[k] are positive
semidefinite (Definition 3 and 5.3). To show a plot, we will prove the assertion
of Theorem 1 under the limited situation stated below.

– D = 2;
– G is for two data points x(1) = (x(1)

1 , x
(1)
2 ) and x(2) = (x(2)

1 , x
(2)
2 );

– p is homogeneous of degree 1 or 2.

Therefore, we will see that the Gram matrix G is positive semidefinite.

G =
[
p[k](x(1), x(1)), p[k](x(1), x(2))
p[k](x(2), x(1)), p[k](x(2), x(2))

]

Case deg(p) = 1. Let p(ξ11, ξ12, ξ21, ξ22), C and X be as follows.

p(ξ11, ξ12, ξ21, ξ22) = c11ξ11 + c12ξ12 + c21ξ21 + c22ξ22

C =
[
c11 c12

c21 c22

]
, X ij

kl = k(x(i)
k , x

(j)
l ), X ij =

[
X ij

11 X ij
12

X ij
21 X ij

22

]
, X =

[
X11 X12

X21 X22

]

The matrix X is positive semidefinite, since it is a Gram matrix with respect
to k. Therefore, it is concluded that G = smryC(X) is positive semidefinite by
Lemma 2.

Case deg(p) = 2. Let p, C and Y be as follows.

p(ξ11, ξ12, ξ21, ξ22) =
2∑

k1=1

2∑
k2=1

2∑
l1=1

2∑
l2=1

c(k1,k2),(l1,l2)ξk1l1ξk2l2

C =
[
c(k1,k2),(l1,l2)

]
k1,k2,l1,l2=1,2

Y ij =
[
X ij

k1,l1
X ij

k2,l2

]
k1,k2,l1,l2=1,2

, Y =
[
Y 11 Y 12

Y 21 Y 22

]

To apply Lemma 2 to G = smryC(Y ), we claim that Y is positive semidefinite.
The claim proves true since Y is a submatrix of X ⊗ X such that the diagonal
elements of Y are also diagonal elements in X ⊗ X (Proposition 2).
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5 Proof of Theorem 1

5.1 Mathematical Preliminary

In the remainder of this paper, a matrix always means real matrix.
When the transpose of a matrix A is denoted by AT, a symmetric A satisfies

AT = A, and an orthogonal A does AT = A−1.
A positive semidefinite kernel K : X ×X −→ R is defined so that, for arbitrary

x1, . . . , xn ∈ X , the Gram matrix G as defined below is positive semidefinite.

G =

⎡
⎢⎣

K(x1, x1) . . . K(x1, xn)
...

...
K(xn, x1) . . . K(x1, xn)

⎤
⎥⎦

The definition of positive semidefinite matrices is given below.

Definition 3. A real matrix A is called positive semidefinite, if, and only if, it
is symmetric and one of, hence all of, the conditions of Proposition 1 hold.

Proposition 1. For an n-dimensional symmetric real matrix A, the following
are equivalent to each other.

(1) (c1, . . . , cn)A(c1, . . . , cn)T ≥ 0 for arbitrary (c1, . . . , cn) ∈ R
n.

(2) A has only non-negative real eigenvalues.
(3) There exists an n-dimensional orthogonal matrix P such that PTAP is di-

agonal with non-negative elements.
(4) A = BTB for some m × n real matrix B.

Note that, from now on in this paper, we deploy the notion that a positive
semidefinite matrix is necessarily symmetric.

Proposition 2. Let A = [Aij ] be an n-dimensional positive semidefinite ma-
trix. For α1, . . . , αm ∈ {1, . . . , n} for an arbitrary m, the m-dimensional matrix
A[α1, . . . , αm] whose (i, j)-element is Aαiαj is also positive semidefinite. In par-
ticular, any diagonal element of a positive semidefinite matrix is non-negative.

5.2 Proof of Lemma 2

The claim that A and smryA(X) are symmetric follows from Lemma 3.

Lemma 3. For an m-dimensional real matrix A, the following are equivalent to
each other.

(1) A is symmetric.
(2) The linear summary matrix smryA(X) is symmetric for an arbitrary mn-

dimensional positive semidefinite matrix X.

Proof. Easy to see. ��
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To prove the remainder of the assertion of Lemma 2, we first prove for the case
where A is diagonal, and then prove the general case.

Assume that A is a positive semidefinite diagonal matrix, i.e. the I-th diagonal
element αI is equal to or greater than 0 for I = 1, . . . , m.

If X is positive semidefinite, there exists an mn-dimensional matrix Y =
[Y ij ]i,j=1,...,n such that X = Y TY by Proposition 1 (4).

trATX ij =
m∑

I=1

αI

(
n∑

k=1

m∑
l=1

Y ki
lI Y kj

lI

)
=

m∑
I=1

n∑
k=1

m∑
l=1

(
√

αIY
ki
lI )(

√
αIY

kj
lI )

Therefore, smryA(X) = ZTZ holds for the m2n × n matrix Z such that

Zmn(I−1)+m(k−1)+l,i =
√

αIY
ki
lI .

This means that smryA(X) is positive semidefinite.
To prove the inverse, we assume n = 1. Let XI is an m-dimensional positive

semidefinite XI whose elements are 0 except for XII = 1. Since smryA(XI) =
αI ≥ 0 holds for arbitrary I, A turns out positive semidefinite.

Now, we claim that the assertion for the general case where A is not necessarily
diagonal is reduced to that of the diagonal case. Note that A is symmetric
(Lemma 3). Therefore, PTAP is diagonal for some orthogonal matrix P . Our
claim immediately follows from the properties shown below.

1. A is positive semidefinite, if, and only if, so is PTAP .
2. X is positive semidefinite, if, and only if, so is Y =

[
PTX ijP

]
i,j=1,...n

.

3. smryA(X) = smryP TAP (Y ), since

tr(ATX ij) = tr
(
PT(ATX ij)P

)
= tr

(
(PTAP )

T
(PTX ijP )

)
.

Now, we have completed the proof.

Corollary 1. For an m-dimensional real matrix A, the following are equivalent
to each other.

(1) A is positive semidefinite.
(2) A is a symmetricmatrix such that tr(ATX) ≥ 0 for an arbitrary m-dimensional

positive semidefinite matrix X.

5.3 Proof of Theorem 1

The concept of linear summaries of matrices can be naturally extended to that
of polynomial summaries of matrices, and Lemma 2 is generalized as Lemma 4,
to which Theorem 1 is a direct corollary.

Let p be a polynomial of degree d in the m2 variables ξ11, ξ12, . . . , ξmm. The
p-polynomial summary matrix of an mn-dimensional matrix X = [X ij ]i,j=1,...,n

is denoted by smryp[X ], and is defined as follows.

smryp[X ] =
[
p(X ij

11, X
ij
12, . . . , X

ij
mm)

]
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Lemma 4. Let p be a real polynomial in the m2 variables {ξij}i,j=1,...,m. If
p is given a representation whose coefficient matrix C is positive semidefinite,
smryp[X ] is positive semidefinite for an arbitrary mn-dimensional positive
semidefinite matrix X.

Proof. Symmetry of smryp[X ] follows from that of C.
Let X̄ ij be the md+1−1

m−1 -dimensional matrix defined as follows.

– The rows and columns are indexed by k ∈ {1, . . . , m}[0..d].
– The (k, l)-element for k, l ∈ {1, . . . , m}[0..d] is defined as follows.

X̄ ij
k,l =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if k = l = ∅;
δ∏

α=1

X ij
kαlα

if k, l ∈ {1, . . . , m}δ for 1 ≤ δ ≤ d;

0 otherwise.

If we can prove that X̄ = [X̄ ij ]i,j=1,...,n is positive semidefinite, the assertion
follows from Lemma 2, since smryp[X ] = smryC(X̄).

First, we will define the mδ-dimensional matrix X̄〈δ〉ij for 0 ≤ δ ≤ d.

– The rows and columns are identified by k ∈ {1, . . . , m}δ.
– For k, l ∈ {1, . . . , m}δ, the (k, l)-element is defined as follows.

X̄〈δ〉ij
k,l = X̄ ij

k,l

When X̄〈δ〉 denotes [X̄〈δ〉ij ]i,j=1,...,n, X̄ is isomorphic to the direct sum⊕d
δ=0 X̄〈δ〉. Therefore, proving that X̄ is positive semidefinite is equivalent to

proving that so are X̄〈δ〉 for all 0 ≤ δ ≤ d.
The tensor product X⊗δ has the following properties.

– The rows and columns are indexed by (i, k) ∈ {1, . . . , n}δ × {1, . . . , m}δ.
– The ((i, k), (j, l))-element

(
X̄⊗δ

)
(i,k),(j,l)

is
∏δ

α=1 X iαjα

kαlα
.

Therefore, when iδ denotes (i, . . . , i),

X〈δ〉 = X⊗δ[{1δ, 2δ, . . . , nδ} × {1, . . . , m}δ]

holds under the notation of Proposition 2. Since X is positive semidefinite, so is
X⊗d, and therefore, so is X̄〈δ〉 by Proposition 2. ��

5.4 Consideration of the Case of Degree 1

For a linear polynomials p(ξ11, ξ12, . . . , ξDD), if its unique coefficient matrix C
is not positive semidefinite, neither is the D2-dimensional submatrix C1 cor-
responding to the terms of degree 1. Therefore, Corollary 1 asserts that there
exists a D2-dimensional positive semidefinite matrix X such that C1

TX < 0.
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When we define a positive semidefinite kernel k over X∗ = {x(1), . . . , x(D)} by
k(x(i), x(j)) = γXij for a positive γ, the following holds.

p[k]((x(1), . . . , x(D)), (x(1), . . . , x(D))) = c∅,∅ + γCT
1X.

Therefore, p[k] is not positive semidefinite for a sufficiently large γ.

Proposition 3. Assume that p(ξ11, ξ12, . . . , ξDD) is a linear polynomial such
that its unique coefficient matrix is not positive semidefinite. Then, there exists
X∗ and k : X∗ × X∗ −→ R such that | X∗ |≤ D, k is positive semidefinite, and
p[k] is not positive semidefinite.

6 Applications

6.1 Generalization of Polynomial Kernels

The following direct corollary to Theorem 1 presents the multivariate version of
the polynomial kernels (Sect. 2.1).

Corollary 2. Let p be a real polynomial in the D variables of {ξii | i = 1, . . . , D}.
If p includes only non-negative coefficients, then the p-summary p[k] is always a
kernel function for an arbitrary kernel k.

Proof. The polynomial p can be represented by a diagonal coefficient matrix
with non-negative elements, which is apparently positive semidefinite. Hence,
we have the assertion by Theorem 1. ��

6.2 Generalization of the Determinant Kernels

Take two data points x = (x(1), . . . , x(D)) and y = (y(1), . . . , y(D)). Letting Φ(ξ)
be the characteristic polynomial of a Gram matrix G =

[
k(x(i), y(j))

]
i,j=1,...,D

,
Wolf et al. [2] and Zhou [3] proved that the constant part (i.e. det(G)) of Φ(ξ)
is a positive semidefinite kernel, if k(x(i), y(j)) is positive semidefinite.

Generalizing the result, we will see that all of the coefficients of Φ(ξ) are also
positive semidefinite. When (−1)dΦD,d denotes the coefficient of the term of ξd

of (8), ΦD,d is a (D − d)-degree homogeneous polynomial in {ξ11, ξ12, . . . , ξDD}.

det

⎡
⎢⎣
ξ11 − ξ . . . ξ1D

...
. . .

...
ξD1 . . . ξDD − ξ

⎤
⎥⎦ (8)

Thus, we have the following.

Φ(ξ) =
D∑

d=1

(−1)d (ΦD,d[k](x, y)) ξd
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Corollary 3. For an arbitrary kernel k, ΦD,d[k]((x(1), . . . , x(D)), (y(1), . . . , y(D)))
are positive semidefinite kernels for d = 0, . . . , D.

Proof. ΦD,d(ξ11, ξ12, . . . , ξDD) is evaluated as follows, where SD−d denotes the
permutation group acting on {1, . . . , D − d} and sgn(π) does the sign of the
permutation π ∈ SD−d.

ΦD,d =
∑

1≤α1<···<αD−d≤D

det([ξαiαj ]i,j=1,...,D−d)

=
∑

1≤α1<···<αD−d≤D

∑
π∈SD−d

sgn(π)
D−d∏
i=1

ξαiαπ(i)

We fix an instance of 1 ≤ α1 < · · · < αD−d ≤ D, and show that the coefficient
matrix Cα1,...,αD−d

for
∑

τ∈SD−d
sgn(π)

∏D−d
i=1 ξαiαπ(i) is positive semidefinite.

∑
π∈SD−d

sgn(π)

D−d∏
i=1

ξαiαπ(i) =
∑

π∈SD−d

∑
σ∈SD−d

sgn(σ)sgn(π ◦ σ)

(D − d)!

D−d∏
i=1

ξασ(i)απ(σ(i))

=
∑

σ∈SD−d

∑
τ∈SD−d

sgn(σ)√
(D − d)!

sgn(τ )√
(D − d)!

D−d∏
i=1

ξασ(i)ατ(i)

Therefore, Cα1,...,αD−d
is equal to cTc for the row vector c =

(
sgn(σ)√
(D−d)!

)

σ∈SD−d

,

and therefore, is positive semidefinite. ��

6.3 Correction to the CI and WDwS Kernels

Let x and y be strings of an alphabet Σ with length L (i.e. x = x1x2 . . . xL

and y = y1y2 . . . yL). We will inspect when the kernels K defined by (9) are
positive semidefinite, where {w1, w2, . . . , wL−k+1} and w̄ are positive weights, s
is a constant shift, xi,� denotes the contiguous substring xixi+1 . . . xi+�−1 of x,
and k : Σ� × Σ� −→ R is a positive semidefinite kernel2. The codon-improved
kernels [4] corresponds to the special case of s = 3, and the weighted-degree-
with-shift kernels [5] are derived from sums over plural shifts s.

K(x, y) =
L−�+1∑

i=1

wi {k(xi,�, yi,�) + w̄ (k(xi,�, yi+s,�) + k(xi+s,�, yi,�))} (9)

Let CL be the matrix whose (i, j)-element is defined by: CL,i,j = wi, if i = j;
CL,i,j = w̄wmin{i,j}, if i = j + s or j = i + s; CL,i,j = 0, otherwise. CL is a
coefficient matrix of the polynomial determining the kernels of (9). Further, let
q and r such that L − � + 1 = sq + r and r ∈ {1, . . . , s}. Equation (10) holds for

2 k(xi,�, yj,�) = 0 if i > L − � + 1 or i > L − � + 1.
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α
(i)
j , which is the determinant of the (j +1)-dimensional submatrix of CL whose

(a, b)-element is CL,s(a−1)+i,s(b−1)+i. Moreover, α
(i)
j ’s are calculated by (11).

det(CL) =
r∏

i=1

α(i)
q

s∏
i=r+1

α
(i)
q−1 (10)

α
(i)
−1 = 1, α

(i)
0 = wi, α

(i)
j = wsj+iα

(i)
j−1 − w̄2w2

s(j−1)+iα
(i)
j−2 (11)

CL is positive definite (i.e. all the eigenvalues are strictly positive), if, and only
if, α

(i)
j > 0 hold for all (i, j) such that sj + i ≤ L − � 1. Corollary 4 follows from

this property, and Corollary 5 does from Corollary 4.

Corollary 4. The kernels K defined by (9) are positive semidefinite, if α
(i)
j > 0

hold for all (i, j) such that sj + i ≤ L − � + 1.

Corollary 5. The kernels K defined by (9) are positive semidefinite, if
w1, . . . , wL−�+1 and w̄ satisfy the following inequality.

w̄ ≤ min
{

wa

wa−s + wa
| a = s + 1, . . . , L − � + 1

}

Proof. For i ∈ {1, . . . , s}, α
(i)
j > 0 is proved by mathematical induction on j. ��
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Abstract. In this paper, we address the issue of learning nonlinearly separable
concepts with a kernel classifier in the situation where the data at hand are altered
by a uniform classification noise. Our proposed approach relies on the combina-
tion of the technique of random or deterministic projections with a classification
noise tolerant perceptron learning algorithm that assumes distributions defined
over finite-dimensional spaces. Provided a sufficient separation margin charac-
terizes the problem, this strategy makes it possible to envision the learning from
a noisy distribution in any separable Hilbert space, regardless of its dimension;
learning with any appropriate Mercer kernel is therefore possible. We prove that
the required sample complexity and running time of our algorithm is polynomial
in the classical PAC learning parameters. Numerical simulations on toy datasets
and on data from the UCI repository support the validity of our approach.

1 Introduction

For a couple of years, it has been known that kernel methods [1] provide a set of efficient
techniques and associated models for, among others, classification supported by strong
theoretical results (see, e.g. [2,3]), mainly based on margin criteria and the fact they
constitute a generalization of the well-studied class of linear separators.

Astonishingly enough however, there is, to our knowledge, very little work on the
issue of learning noisy distributions with kernel classifiers, a problem which is of great
interest if one aims at using kernel methods on real-world data. Assuming a uniform
classification noise process [4], the problem of learning from noisy distributions is a
key challenge in the situation where the feature space associated with the chosen kernel
is of infinite dimension, knowing that approaches to learn noisy linear classifiers in finite
dimension do exist [5,6,7,8].

In this work, we propose an algorithm to learn noisy distributions defined on gen-
eral Hilbert spaces (not necessarily finite dimensional) from a reasonable number of
data (where reasonable is specified later on); this algorithm combines the technique of
random projections with a known finite-dimensional noise-tolerant linear classifier.

The paper is organized as follows. In Section 2, the problem setting is depicted
together with the assumed classification noise model. Our strategy to learn kernel clas-
sifiers from noisy distributions is described in Section 3. Section 4 reports some con-
tributions related to the questions of learning noisy perceptrons and learning kernel
classifiers using projections methods. Numerical simulations carried out on synthetic

M. Hutter, R.A. Servedio, and E. Takimoto (Eds.): ALT 2007, LNAI 4754, pp. 328–342, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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datasets and on benchmark datasets from the UCI repository proving the effectiveness
of our approach are presented in Section 5.

2 Problem Setting and Main Result

Remark 1 (Binary classification in Hilbert spaces, zero-bias separating hyperplanes).
From now on, X denotes the input space, assumed to be a Hilbert space equipped
with an inner product denoted by ·. In addition, we will restrict our study to the binary
classification problem and the target space Y will henceforth always be {−1, +1}.

We additionally make the simplifying assumption of the existence of zero-bias sep-
arating hyperplanes (i.e. hyperplanes defined as w · x = 0).

2.1 Noisy Perceptrons in Finite Dimension

The Perceptron algorithm [9] (cf.
Input: S = {(x1, y1) . . . (xm, ym)}
Output: a linear classifier w

t ← 0,w0 ← 0
while there is i s.t. yiwt · xi ≤ 0 do

wt+1 ← wt + yixi/‖xi‖
t ← t + 1

end while
return w

Fig. 1. Perceptron algorithm

Fig. 1) is a well-studied greedy
strategy to derive a linear classi-
fier from a sample S = {(x1, y1)
. . . (xm, ym)} of m labeled pairs
(xi, yi) from X × Y assumed to
be drawn independently from an
unknown and fixed distribution D
over X × Y . If there exists a sep-
arating hyperplane w∗ ·x = 0 ac-
cording to which the label y of x
is set, i.e. y is set to +1 if w∗ ·x ≥ 0 and −1 otherwise1, then the Perceptron algorithm,
when given access to S, converges towards a hyperplane w that correctly separates S
and might with high probability exhibit good generalization properties [10].

We are interested in the possibility of learning linearly separable distributions on
which a random uniform classification noise, denoted as CN [4], has been applied, that
is, distributions where correct labels are flipped with some given probability η. In order
to tackle this problem, [5] has proposed a simple algorithmic strategy later exploited
by [6]: it consists in an iterative learning process built upon the Perceptron algorithm
where update vectors are computed as sample averages of training vectors fulfilling cer-
tain properties. The expectations of those update vectors guarantee the convergence of
the learning process and, thanks in part to Theorem 1 stated just below, it is guaranteed
with probability 1 − δ (δ ∈ (0, 1)) that whenever the dimension n of X is finite and
there exists a separating hyperplane of margin γ > 0, a polynomial number of training
data is sufficient for the sample averages to be close enough to their expectations; this,
in turn implies a polynomial running time complexity of the algorithm together with
a 1 − δ guarantees for a generalization error of ε. Here, polynomiality is defined with
respect to n, 1/δ, 1/ε, 1/γ and 1/(1 − 2η). Note that despite the availability of gener-
alization bounds for soft-margin SVM expressed in terms of margin and the values of

1 We assume a deterministic labelling of the data according to the target hyperplane w∗, i.e.
Pr(y = 1|x) = 1 or Pr(y = 1|x) = 0; a nondeterministic setting can be handled as well.
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Algorithm 1. RP-classifier
Input: • S = {(x1, y1) . . . (xm, ym)} in X × {−1, +1}

• n, projection dimension
Output: • a random projection π = π(S , n) : X → X ′, X ′ = span〈xi1 , . . . ,xin〉

• projection classifier f(x) = w · π(x), w ∈ X ′

learn an orthonormal random projection π : X → X ′

learn a linear classifier w from S = {(π(x1), y1) . . . (π(xm), ym)}
return π, w

slack variables, which account for possible classification errors, there is no result, to our
knowledge, which characterizes the solution obtained by solving the quadratic program
when the data is uniformly corrupted by classification noise. It is therefore not possible
to control beforehand the values of the slack variables, and, hence, the non-triviality of
the bounds (i.e. bounds with values lower than 1).

Theorem 1 ([11]). If F = {fϕ(x)|ϕ ∈ Φ} has a pseudo-dimension of h and a range
R (i.e. |fϕ(x)| ≤ R for any ϕ and x), and if a random sample of M ≥ m0(h, R, δ, ε) =
8R2(2h ln 4R

ε
+ln 9

δ )
ε2 i.i.d examples are drawn from a fixed distribution, then with proba-

bility 1 − δ, the sample average of every indicator function fϕ(x) > α is within ε
R of

its expected value, and the sample average of every fϕ is within ε of its expected value.
(The pseudo-dimension of F is the VC dimension of {fϕ(x) > α|ϕ ∈ Φ ∧ α ∈ R}.)

2.2 Main Result: RP Classifiers and Infinite-Dimensional Spaces

h The question that naturally arises is whether it is possible to learn linear classifiers
from noisy distributions defined over infinite dimensional spaces with similar theoreti-
cal guarantees with respect to the polynomiality of sample and running time complexi-
ties. We answer to this question positively by exhibiting a family of learning algorithm
called random projection classifiers capable of doing so. Classifiers of this family learn
from a training sample S according to Algorithm 1: given a finite projection dimension
n, they first learn a projection π from X to a space X ′ spanned by n (randomly chosen)
vectors of S dimensional space and then, learn a finite dimensional noisy perceptron
from the labeled data projected according to π. An instantiation of RP-classifiers simply
consists in a choice of a random projection learning algorithm and of a (noise-tolerant)
linear classifier.

Let us more formally introduce some definitions and state our main result.

Remark 2 (Labeled Examples Normalization). In order to simplify the definitions and
the writing of the proofs we will use the handy transformation that consists in convert-
ing every labeled example (x, y) to yx/‖x‖. From now on, we will therefore consider
distributions and samples defined on X (instead of X × Y).

Note that the transformation does not change the difficulty of the problem and that
the search for a separating hyperplane between +1 and -1 classes boils down to the
search for a hyperplane w verifying w · x > 0.

Definition 1 ((γ, ε)-separable distributions Dγ,ε). For γ > 0, ε ∈ [0, 1), Dγ,ε is the
set of distributions on X such that for any D in Dγ,ε, there exists a unit vector w in X
such that Prx∼D[w · x < γ] ≤ ε.
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Definition 2 (CN distributions Uγ,η [4]). For η ∈ [0, 0.5), let the random transforma-
tion Uη map x to −x with probability η and leave it unchanged with probability 1 − η.
The set of distributions Uγ,η is defined as Uγ,η := Uη(Dγ,0).

Uniform classification noise may appear as a very limited model but learnability results
int this framework can be easily extended to more general noise model [12]. We can
now state our main result.

Theorem 2 (Dimension-Independent Learnability of Noisy Perceptrons). There are
an algorithm A and polynomials p(·, ·, ·, ·) and q(·, ·, ·, ·) such that the following holds.

∀ε ∈ (0, 1), ∀δ ∈ (0, 1), ∀γ > 0, ∀η ∈ [0, 0.5), ∀D ∈ Dγ,0, if a random sample S =
{x1, . . . ,xm} with m ≥ p(1

ε , 1
δ , 1

1−2η , 1
γ ) is drawn from Uη(D), then with probability

at least 1 − δ, A runs in time q(1
ε , 1

δ , 1
1−2η , 1

γ ) and the classifier f := A(S) output by
A has a generalization error Prx∼D(f(x) ≤ 0) bounded by ε.

3 Combining Random Projections and a Noise-Tolerant Algorithm

This section gives a proof of Theorem 2 by showing that an instance of RP-classifier
using a linear learning algorithm based on a specific perceptron update rule, Cnoise-
update, proposed by [8] and on properties of simple random projections proved by [13]
is capable of efficiently learning CN distributions (see Definition 2) independently of
the dimension of the input space.

The proof works in two steps. First (section 3.1) we show that Cnoise-update (Al-
gorithm 2) in finite dimension can tolerate a small amount of malicious noise and
still returns relevant update vectors. Then (section 3.2) thanks to properties of ran-
dom projections (see [13]) we show that they can be efficiently used to transform a
CN problem into one that meets the requirements of Cnoise-update (and Theorem 4
below).

3.1 Perceptron Learning with Mixed Noise

We suppose in this subsection that X is of finite dimension n. We make use of the
following definitions.

Definition 3 (Sample and population accuracies). Let w be a unit vector, D be a
distribution on X and S be a sample drawn from D. We say that w has sample accuracy
1 − ε on S and (population) accuracy 1 − ε′ if:

Prx∈S [w · x < 0] = ε, and Prx∼D [w · x < 0] = ε′.

Definition 4 (CN-consistency). A unit vector w∗ is CN-consistent on D ∈ Uγ,η if
Prx∼D [w∗ · x < γ] = η. It means w∗ makes no error on the noise free version of D.

We recall that according to the following theorem [8], Cnoise-update, depicted in
Algorithm 2, when used in a perceptron-like iterative procedure, renders the learning of
CN-distributions possible in finite dimension.
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Algorithm 2. Cnoise-Update [8]
Input: S : training data, w: current weight vector, ν a nonnegative real value
Output: an update vector z

μ ← 1

|S|
∑
x∈S

x, μ′ ← 1

|S|
∑

x∈S∧w·x≤0

x

if w · μ ≤ ν ‖w‖ then
z ← μ

else

a ← w · μ − ν ‖w‖
w · μ − w · μ′ , b ← −w · μ′ + ν ‖w‖

w · μ − w · μ′ , z ← aμ′ + bμ

end if
if w · z > 0 then

z ← z − w
w · z
w · w /* projection step */

end if
return z

Theorem 3 ([8]). Let γ ∈ [0, 1], η ∈ [0, 0.5), ε ∈ (0, 1 − 2η]. Let D ∈ Uγ,η. If w∗ is
CN-consistent on D, if a random sample S of m ≥ m0

(
10(n + 1), 2, δ, εγ

4

)
examples

are drawn from D and if the perceptron algorithm uses update vectors from Cnoise-
Update(S,wt,

εγ
4 ) for more than 16

(εγ)2 updates on these points, then the wt with the

highest sample accuracy has accuracy at least 1 − η − ε with probability 1 − δ2.

The question that is of interest to us deals with a little bit more general situation than
simple CN noise. We would like to show that Cnoise-update is still applicable when,
in addition to being CN, the distribution on which it is called is also corrupted by mali-
cious noise [14], i.e. a noise process whose statistical properties cannot be exploited in
learning (this is an ‘incompressible’ noise). Envisioning this situation is motivated by
the projection step, which may introduce some amount of projection noise (cf. Theo-
rem 5), that we treat as malicious noise.

Of course, a limit on the amount of malicious noise must be enforced if some rea-
sonable generalization error is to be achieved. Working with distributions from Uγ,η we
therefore set θmax(γ, η) = γ(1−2η)

8 as the maximal amount tolerated by the algorithm.
For θ ≤ θmax, a minimal achievable error rate εmin(γ, η, θ) = 64θ

γ(1−η)( 1
8 −θ)

will be our

limit3. Provided that the amount of malicious noise is lower than θmax, we show that
learning can be achieved for any error ε ≥ εmin(γ, η, θ). The proof non trivially extends
that of [8] and roughly follows its lines.

Definition 5 (Mixed-Noise distributions, Uγ,η θ). For θ ∈ [0, 1), let the random trans-
formation Uθ leave an input x unchanged with probability 1 − θ and change it to any
arbitrary x′ with probability θ (nothing can be said about x′). The set of distributions
Uγ,η,θ is defined as Uγ,η,θ := Uθ

(
Uη(Dγ,0)

)
.

2 For the remaining of the paper, ε is not the usual error parameter ε′ used in PAC, but ε′(1−2η).
3 Slightly larger amount of noise and smaller error rate could be theoretically targeted. But the

choices we have made suffice to our purpose.
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Remark 3 (CN and MN decomposition). For γ > 0, η ∈ [0, 0.5), θ ∈ [0, 1), the image
distribution Dγ,η,θ := Uθ

(
Uη(Dγ,0)

)
of Dγ,0 ∈ Dγ,0 is therefore a mixture of two

distributions: the first one, of weight 1−θ, is a CN distribution with noise η and margin
γ while nothing can be said about the second, of weight θ. This latter distribution will be
referred to as the malicious part (MN) of Dγ,η,θ. In order to account for the malicious
noise, we introduce the random variable θ : X → {0, 1} such that θ(x) = 1 if x is
altered by malicious noise and θ(x) = 0 otherwise.

From now on, we will use E [f(x)] for Ex∼D [f(x)] and Ê [f(x)] for Ex∈S [f(x)].

Lemma 1. Let γ > 0, η ∈ [0, 0.5) and δ ∈ (0, 1). Let θ ∈ [0, θmax(γ, η)) such that
εmin(γ, η, θ) < 1, ε ∈ (εmin(γ, η, θ), 1] and D ∈ Dγ,η,θ. Let m′ > 1. If a sample S
of size m ≥ m1(m′, γ, θ, ε, δ) = m′ 642

2(1−θ− εγ
64 )(εγ)2

ln 2
δ is drawn from D then, with

probability 1 − δ:

1.

∣∣∣∣∣
1

m

∑
x∈S

θ(x) − E [θ(x)]

∣∣∣∣∣ ≤ εγ

64
2. |{x ∈ S|θ(x) = 0}| > m′.

Proof. Simple Chernoff bounds arguments prove the inequalities. (It suffices to observe
that 1

m

∑
x∈S θ(x) = Ê [θ(x)] and

∑
x∈S θ(x) = m − |{x ∈ S|θ(x) = 0}|.) 
�

Definition 6 (CN-consistency on Mixed-Noise distributions). Letγ > 0, η ∈ [0, 0.5),
θ ∈ [0, θmax(γ, η)). Let D ∈ Uγ,η,θ. Let w∗ ∈ X . If Prx∼D [w∗ · x ≤ γ|θ(x) = 0] =
η then w∗ is said to be CN-consistent.

The next lemma says how much the added malicious noise modify the sample averages
on the CN part of a distribution.

Lemma 2. Let γ > 0, η ∈ [0, 0.5) and δ ∈ (0, 1]. Let θ ∈ [0, θmax(γ, η)) such
that εmin(γ, η, θ) < 1 − 2η, and ε ∈ (εmin(γ, η, θ), 1 − 2η]. Let D ∈ Uγ,η,θ. Let
M (n, γ, η, θ, ε, δ) = m1

(
m0

(
10(n + 1), 2, 3δ

4 , εγ
16

)
, γ, θ, ε, δ

4

)
and w be a unit vec-

tor. If S is a sample of size m > M (n, γ, η, θ, ε, δ) drawn from D then, with probability
1 − δ, ∀R ∈ [−1, 1]:

∣∣∣Ê[(w · x)1l≤R(w · x)] − E[(w · x)1l≤R(w · x)]
∣∣∣ ≤ εγ

8

where 1l≤R(α) = 1 if α ≤ R and 0 otherwise.

Proof. By Lemma 1, we know that |{x ∈ S|θ(x) = 0}| > m0

(
10(n + 1), 2, 3δ

4 , εγ
16

)
with probability 1 − 3δ

4 . So, by Theorem 1, with probability 1 − 3δ
4 − δ

4 , ∀R ∈ [−1, 1]

∣∣∣Ê [(w · x)1l≤R(w · x)|θ(x) = 0] − E [(w · x)1l≤R(w · x)|θ(x) = 0]
∣∣∣ ≤ εγ

16
(1)
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In addition, we have
∣∣∣Ê[(w · x)1l≤R(w · x)] − E[(w · x)1l≤R(w · x)]

∣∣∣
=

∣∣∣Ê[(w · x)1l≤R(w · x)|θ(x) = 0] (Prx∈S [θ(x) = 0] − Prx∼D[θ(x) = 0])

+
(
Ê[(w · x)1l≤R(w · x)|θ(x) = 0] − E[(w · x)1l≤R(w · x)|θ(x) = 0]

)
Prx∼D[θ(x) = 0]

+ Ê[(w · x)1l≤R(w · x)|θ(x) = 1] (Prx∈S [θ(x) = 1] − Prx∼D[θ(x) = 1])

+
(
Ê[(w · x)1l≤R(w · x)|θ(x) = 1] − E[(w · x)1l≤R(w · x)|θ(x) = 1]

)
Prx∼D[θ(x) = 1]

∣∣∣

≤
∣∣∣Ê[(w · x)1l≤R(w · x)|θ(x) = 0]

∣∣∣ |Prx∈S[θ(x) = 0] − Prx∼D[θ(x) = 0]|
(≤ εγ

64
by lemma 1)

+
∣∣∣Ê[(w · x)1l≤R(w · x)|θ(x) = 0] − E[(w · x)1l≤R(w · x)|θ(x) = 0]

∣∣∣ Prx∼D[θ(x) = 0]

(≤ εγ
16

by equation 1)

+
∣∣∣Ê[(w · x)1l≤R(w · x)|θ(x) = 1]

∣∣∣ |Prx∈S [θ(x) = 1] − Prx∼D [θ(x) = 1]|
(≤ εγ

64
by lemma 1)

+
∣∣∣Ê[(w · x)1l≤R(w · x)|θ(x) = 1] − E[(w · x)1l≤R(w · x)|θ(x) = 1]

∣∣∣ Prx∼D[θ(x) = 1]

≤ 1 × εγ

64
+

ε

16
(1 − θ) + 1 × εγ

64
+ 2θ (with probability 1 − δ)

≤ 6ε

64
+ 2θ ≤ 2ε (according to the values of εmin and θmax)


�

The following lemma shows that a CN-consistent vector w∗ allows for a positive ex-
pectation of w∗ · x over a Mixed-Noise distribution.

Lemma 3. Let γ > 0, η ∈ [0, 0.5), θ ∈ [0, θmax(γ, η)). Suppose that D ∈ Uγ,η,θ. If
w∗ is CN-consistent on the CN-part of D, then E [w∗ · x] ≥ (1 − 2η) (1 − θ) γ − θ.

Proof.

E [w∗ · x] = E [w∗ · x|θ(x) = 0] Pr (θ(x) = 0) + E [w∗ · x|θ(x) = 1] Pr (θ(x) = 1)

= E [w∗ · x|θ(x) = 0] (1 − θ) + E [w∗ · x|θ(x) = 1] θ

≥ E [w∗ · x|θ(x) = 0] (1 − θ) − θ ≥ (1 − 2η) (1 − θ) γ − θ

It is easy to check that the lower bound is strictly positive. 
�

We will make use of the following lemma due to Bylander and extend it to the case of
Mixed-noise distributions.

Lemma 4 ([8])
Let γ > 0, η ∈ [0, 0.5), ε ∈ (0, 1 − 2η]. Let D ∈ Uγ,η. Let w be an arbitrary weight
vector. If w∗ is CN-consistent on D, and if w has accuracy 1 − η − ε, then:

(1 − 2η) E [(w∗ · x)1l≤0(w · x)] + ηE [w∗ · x]≥εγ (2)

(1 − 2η) E [(w · x)1l≤0(w · x)] + ηE [w · x] ≤0 (3)

Lemma 5. Let γ > 0, η ∈ [0, 0.5) and δ ∈ (0, 1]. Let θ ∈ [0, θmax(γ, η)) such that
εmin(γ, η, θ) < 4(1−2η)

3 , and ε ∈ (εmin(γ, η, θ), 4(1−2η)
3 ]. Let D ∈ Uγ,η,θ. Let w be
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an arbitrary weight vector and D ∈ Uγ,η,θ. If w∗ is CN-consistent on the CN part of
D, and if w has accuracy 1 − η − 3ε

4 on the CN part of D, then the following holds:

(1 − 2η) E [(w∗ · x)1l≤0(w · x)] + ηE [w∗ · x]≥5εγ

8
(4)

(1 − 2η) E [(w · x)1l≤0(w · x)] + ηE [w · x] ≤ηθ (5)

Proof. For the first inequality, we have:

(1 − 2η) E [(w∗ · x)1l≤0(w · x)] + ηE [w∗ · x]

= (1 − 2η) E [(w∗ · x)1l≤0(w · x)|θ(x) = 1] Pr [θ(x) = 1]

+ ηE [w∗ · x|θ(x) = 1] Pr [θ(x) = 1]

+ (1 − 2η) E [(w∗ · x)1l≤0(w · x)|θ(x) = 0] Pr [θ(x) = 0]

+ ηE [w∗ · x|θ(x) = 0] Pr [θ(x) = 0]

≥ (1 − θ)
3

4
εγ (by lemma 4 eq. 2)

+ (1 − 2η) E [(w∗ · x)1l≤0(w · x)|θ(x) = 1] Pr [θ(x) = 1]

+ ηE [w∗ · x| θ(x) = 1]Pr [θ(x) = 1]

≥ (1 − θ)
3

4
εγ − (1 − 2η) θ − ηθ

≥ (1 − θ)
3

4
εγ − (1 − η) θ ≥ 5εγ

8
(by definition of ε)

For the second inequality, we have:

(1 − 2η) E [(w · x)1l≤0(w · x)] + ηE [w · x]

= (1 − 2η) E [(w · x)1l≤0(w · x)|θ(x) = 1] Pr [θ(x) = 1]

+ ηE [w · x|θ(x) = 1] Pr [θ(x) = 1]

+ (1 − 2η) E [(w · x)1l≤0(w · x)|θ(x) = 0] Pr [θ(x) = 0]

+ ηE [w · x|θ(x) = 0] Pr [θ(x) = 0]

≤ 0 (by lemma 4 eq.3)

+ (1 − 2η) E [(w · x)1l≤0(w · x)|θ(x) = 1] Pr [θ(x) = 1]

+ ηE [w · x| θ(x) = 1]Pr [θ(x) = 1] ≤ 0 + ηθ 
�

We now state our core lemma. It says that, with high probability, Algorithm 2 outputs a
vector that can be used as an update vector in the Perceptron algorithm (cf. Fig. 1), that
is a vector erroneously classified by the current classifier but correctly classified by the
target hyperplane (i.e. the vector is noise free). Calling Algorithm 2 iteratively makes it
possible to learn a separating hyperplane from a mixed-noise distribution.

Lemma 6. Let γ > 0, η ∈ [0, 0.5) and δ ∈ (0, 1). Let θ ∈ [0, θmax(γ, η)) such that
εmin(γ, η, θ) < 4

3 (1 − η). Let D ∈ Uγ,η,θ and w∗ be the target hyperplane (CN-
consistent on the CN-part of D). ∀ε ∈

[
εmin(γ, η, θ), 4

3 (1 − η)
)
, for all input samples

S of size M(n, γ, η, θ, δ, ε), with probability at least 1 − δ, ∀w ∈ X if w has accuracy
at most 1−η− 3ε

4 on the CN-part of D then Cnoise-update (Algorithm 2), when given
inputs S, w, εγ

4 , outputs a vector z such that w · z ≤ 0 and w∗ · z ≥ εγ
4 .
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Proof. The projection step guarantees that w·z ≤ 0. We focus on the second inequality.

Case 1. Suppose that w · μ < ‖w‖ εγ
4 : z is set to μ by the algorithm, and, if needed, is

projected on the w hyperplane.
Every linear threshold function has accuracy at least η on the CN-part of D, so an

overall accuracy at least (1 − θ)η. w has accuracy on the CN-part of D of, at most,
1 − η − 3ε

4 and so an overall accuracy at most of 1 − (1 − θ)
(
η + 3ε

4

)
+ θ.

It is easy to check that

1 − (1 − θ)
(

3ε

4
+ η

)
+ θ ≥ (1 − θ)η ⇔ (1 − 2η) (1 − θ) γ − θ ≥ (1 − θ)

3ε

4
γ − (2γ + 1) θ,

and thus, from Lemma 3, E [w∗ · x] ≥ (1 − θ) 3ε
4 γ − (2γ + 1) θ. Because θ <

θmax(γ, η) and ε > εmin(γ, η, θ), we have E [w∗ · x] ≥ 5εγ
8 . Because of Lemma 2 and

because |S| ≥ M(n, γ, η, θ, δ, ε), we know that w∗ · z is, with probability 1− δ, within
εγ
8 of its expected value on the entire sample; hence we can conclude that w∗ · μ ≥ εγ

2 .
If w · μ < 0, then the lemma follows directly.
If 0 < w · μ < ‖w‖ εγ

4 , then z is set to μ and, if needed, projected to w. Let
z‖ = μ − z (z‖ is parallel to w). It follows that

w∗ · μ ≥ εγ

2
⇔ w∗ · z + w∗ · z‖ ≥ εγ

2
⇒ w∗ · z ≥ εγ

2
−

∥∥z‖
∥∥ ⇒ w∗ · z ≥ εγ

2
− ‖μ‖

⇒ w∗ · z ≥ εγ

4
.

And the lemma again follows.

Case 2. Suppose instead that w · μ ≥ ‖w‖ εγ
4 . Let a ≥ 0 and b ≥ 0 be chosen so that

a w
‖w‖ · μ′ + b w

‖w‖ · μ = εγ
4 and a + b = 1. w · μ′ is negative and w

‖w‖ · μ ≥ εγ
4 in this

case, so such an a and b can always be chosen. Note that in this case, Cnoise-update
sets z to aμ′ + bμ and then projects z to the w hyperplane. Because w · z = ‖w‖ εγ

4
before z is projected to the w hyperplane, then the projection will decrease w∗ · z by at
most εγ

4 (recall that w∗ is a unit vector).

Note that a w
‖w‖ ·μ′ +b w

‖w‖ ·μ = aÊ
[(

w
‖w‖ · x

)
1l≤0(w · x)

]
+bÊ

[
w

‖w‖ · x
]

. Because,

by lemma 2, sample averages are, with probability 1 − δ, within εγ
8 of their expected

values, it follows that

aE

[(
w

‖w‖ · x
)

1l≤0(w · x)

]
+ bE

[
w

‖w‖ · x
]

≥ εγ

8
.

Lemma 5 implies that a′ = η
1−η and b′ = 1−2η

1−η results in a′E
[(

w
‖w‖ · x

)
1l≤0

(w · x)] + b′E[ w
‖w‖ · x] ≤ ηθ

1−η and so less than εγ
8 . So, it must be the case when

a ≤ η
1−η because a larger a would result in an expected value less than εγ

8 and a sample
average less than εγ

4 .
Lemma 5 also implies that choosing a′ = η

1−η and b′ = 1−2η
1−η results in a′E[(w∗ ·

x)1l≤0(w · x)] + b′E[w∗ · x] ≥ 5εγ
8
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Because a′ ≥ a and b′ ≤ b, and because Lemma 3 implies E [w∗ · x] ≥ 5εγ
8 , it

follows that aE[(w∗ ·x)1l≤0(w ·x)]+ bE[w∗ ·x] ≥ 5εγ
8 and aw∗ ·μ′ + bw∗ ·μ ≥ εγ

2 .
Thus, when z is projected onto hyperplane w, w∗ · z ≥ εγ

4 and w · z = 0. Conse-
quently a total of m examples, implies , with probability 1 − δ, that w∗ · z ≥ εγ

4 and
w · z ≤ 0 for the z computes by Cnoise-update. This proves the Lemma. 
�

We finally have the Theorem 4 for Mixed-Noise learnability using Cnoise-update.

Theorem 4. Let γ > 0, η ∈ [0, 0.5) and δ ∈ (0, 1). Let θ ∈ [0, θmax(γ, η)) such that
εmin(γ, η, θ) < 1−2η. Let D ∈ Uγ,η,θ and w∗ be the target hyperplane (CN-consistent
on the CN-part of D). ∀ε ∈ (εmin(γ, η, θ), 1−2η], ∀w ∈ X , when given inputs S of size
at least M(n, γ, η, θ, δ, ε), if the Perceptron algorithm uses update vectors from CNoise
update for more than 16

ε2γ2 updates, then the wi with the highest sample accuracy on
the CN-part has accuracy on the CN-part of D at least 1− η− ε with probability 1− δ.

Proof. By lemma 6, with probability 1−δ, whenever wi has accuracy at most 1−η− 3ε
4

on the CN-part of S then Cnoise-update(X,wi,
εγ
16 ) will return an update vector zi

such that w∗ · zi ≥ εγ
4 and wi · zi ≤ 0. The length of a sequence (z1, . . . , zl) where

each zi has εγ
4 separation, is at most 16

(εγ)2 [15,16]. Thus, if more than 16
(εγ)2 update

vectors are obtained, then at least one update vector must have less than εγ
4 separation,

which implies at least one w has more than 1 − η − 3εγ
4 accuracy on CN-part.

The sample accuracy of wi corresponds to the sample average of an indicator func-
tion. By Theorem 1, the indicator functions are covered with probability 1 − δ. So,
assuming that the situation is in the 1− δ region, the sample accuracy of each wi on the
CN-part of the distribution will be within εγ

16 of its expected value. Since at least one
wi will have 1 − η − 3ε

4 accuracy on the CN-part, this implies that its sample accuracy
on the CN-part is at least 1 − η − 13ε

16 . The accuracy on the distribution is more than
1 − (1 − θ)

(
η − 13ε

16

)
− θ < 1 − (1 − θ)

(
η − 13ε

16

)
− ε

32 . Any other wi with a better
sample accuracy will have accuracy of at least 1 − (1 − θ)

(
η − 13ε

16

)
− 5ε

32 and so an
accuracy on the CN-part of at least 1 − η − ε. 
�

Remark 4. An interpretation of the latter result is that distributions from Dγ,ε, for ε > 0
can also be learned if corrupted by classification noise. The extent to which the learning
can take place of course depends on the value of ε (which would play the role of θ in
the derivation made above).

In the next section, we show how random projections can help us reduce a problem
of learning from a possibly infinite dimensional CN distribution to a problem of finite
Mixed-Noise distribution where the parameters of the Mixed-Noise distribution can be
controlled. This will directly give a proof to Theorem 2.

3.2 Random Projections and Separable Distributions

Here, we do not make the assumption that X is finite-dimensional.

Theorem 5 ([13]). Let D ∈ Dγ,0. For a random sample S = {x1, . . . ,xn} from D, let
π(S) : X → span〈S〉 be the orthogonal projection on the space spanned by x1, . . . ,xn.
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If a sample S of size n ≥ 8
θ [ 1

γ2 +ln 1
δ ] is drawn according to D then with probability

at least 1 − δ, the mapping π = π(S) is such that ∃w Prx∼D [w · π(x) > γ/2] < θ on
span〈S〉 ⊆ X .

This theorem says a random projection can transform a linearly separable distribution
into an almost linearly separable one defined in a finite dimensional space. We can
therefore consider that such a transformation incurs a projection noise; this noise should
possess some exploitable regularities for learning, but we leave the characterization of
these regularities for a future work and apprehend in the sequel this projection noise as
malicious. In RP-classifier, the vectors used to define π are selected randomly within
the training set.

Corollary 1 (of Theorem 2). Let γ > 0, η ∈ [0, 0.5) and D ∈ Uγ,η. ∀ε ∈ (0, 1 −
2η], ∀δ ∈ (0, 1], if a sample S of m > M( K

εγ(1−2η)

[
1
γ2 + ln 2

δ

]
, γ

2 , η, δ
2 , ε

2 ) examples

drawn from D is input to RP-classifier, then with probability 1 − δ RP-classifier
outputs a classifier with accuracy at least 1 − η − ε. (K > 0 is a universal constant.)

Proof. Fix γ, η, D ∈ Uγ,η and ε. Fix θ = γε(1−2η)
2080 .

First, it is straightforward to check that θ ≤ θmax(γ, η), εmin ≤ min( ε
2 , 1−2η) and,

since θ ≤ εmin(γ, η, θ), θ ≤ ε
2 . (The assumptions of Theorem 4 hold true.)

By Theorem 5, choosing n = 8
θ [ 1

γ2 + ln 2
δ ] guarantees with probability 1 − δ

2 , that
the projection D′ of D onto a random subspace of dimension n is a distribution having
a CN part of weight 1 − θ and another part of weight θ corrupted by projection noise.
D′ can therefore be considered as an element of U γ

2 ,η,θ4.
By Theorem 4, using m examples (with m set as in the Theorem) allows with prob-

ability 1 − δ
2 the learning algorithm that iteratively calls Cnoise-update to return in

polynomial time a classifier with accuracy at least ε
2 on the CN-part of the distribution.

Therefore, the accuracy of the classifier on the examples drawn from D is, with
probability 1 − δ

2 − δ
2 = 1 − δ, at least 1 − (1 − θ) ε

2 − θ ≥ 1 − ε
2 − δ

2 = 1 − δ.
Theorem 2 now follows. 
�

Remark 5. We could also learn with an initial malicious noise θinit less than θmax. In
this case, the maximum amount of noise added by random projections must obviously
be less than θmax − θinit.

Remark 6. Random projections based on the Johnson-Lindenstrauss lemma could be
directly combined with a CN-noise tolerant perceptron to achieve the same kind of
learnability results. It however requires numerous data resamplings and the resulting
sample and time complexities are very high.

4 Related Work

Learning from a noisy sample of data implies that the linear problem at hand might not
necessarily be consistent, that is, some linear constraints might contradict others. In that

4 The choices of θ and n give K = 2080 × 8.
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Fig. 2. Error rates on UCI datasets with random projections, KPCA and KGS projection with
different amount of classification noise; 1-standard deviation error bars are shown

case, as stated before, the problem at hand boils down to that of finding an approximate
solution to a linear program such that a minimal number of constraints are violated,
which is know as an NP-hard problem (see, e.g., [17]).

In order to cope with this problem, and leverage the classical perceptron learning
rule to render it tolerant to noise classification, one line of approaches has mainly been
exploited. It relies on exploiting the statistical regularities in the studied distribution
by computing various sample averages as it is presented here; this makes it possible to
‘erase’ the classification noise. As for Bylander’s algorithms [5,8], whose analysis we
have just extended, the other notable contributions are those of [6] and [7]. However,
they tackle a different aspect of the problem of learning noisy distributions and are
more focused on showing that, in finite dimensional spaces, the running time of their
algorithms can be lowered to something that depends on log 1/γ instead of 1/γ.

Regarding the use of kernel projections to tackle classification problems, the Kernel
Projection Machine of [18] has to be mentioned. It is based on the use of Kernel PCA
as a feature extraction step. The main points of this interesting work are a proof on the
regularizing properties of KPCA and the fact that it gives a practical model selection
procedure. However, the question of learning noisy distributions is not addressed.

Freund and Schapire [19] provide data-dependent bounds for the voted kernel per-
ceptron that support some robustness against outliers. However, as for SVM, it is not
clear whether this algorithm is tolerant to ’systematic’ uniform classification noise.

Cesa-Bianchi and al. in [20] propose bounds for online perceptron on non-separable
data. However, the authors specifiy that their algorithms tolerate only a low rate of non-
linearly separable examples and thus are not valid for uniform classification noise.

Finally, the empirical study of [21] provides some insights on how random projec-
tions might be useful for classification. No sample and running time complexity results
are given and the question of learning with noise is not addressed.

5 Numerical Simulations

UCI Datasets. We carried out numerical simulations on benchmark datasets from the
UCI repository preprocessed and made available by Gunnar Rätsch5. For each problem
(Banana, Breast Cancer, Diabetes, German, Heart), we have 100 training and 100 test

5 http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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samples. All these problems contain a few hundred training examples, which is far from
what the theoretical results require to get interesting accuracy and confidence.

We have tested three projection procedures: random, Kernel PCA (KPCA), Kernel
Gram-Schmidt (KGS) [22]. This latter projection is sometimes referred to as a ‘sparse
version of Kernel PCA’ (note that KPCA and KGS are deterministic projections and
that RP-classifier is not a random-projection learning algorithm anymore). In order to
cope with the non separability of the problems, we have used Gaussian kernels, and
thus infinite-dimensional spaces, whose widths have been set to the best value for SVM
classification as reported on Gunnar Rätsch’s website.

In our protocol, we have corrupted the data with classification noises of rates 0.0,
0,05, 0.10, 0.15, 0.20, 0.25, 0.30. Instead of carrying out a cumbersome cross-validation
procedure, we provide the algorithm RP-classifier with the actual value of η.

To determine the right projection size we resort to the same cross-validation proce-
dure as in [23], trying subspace sizes of 2 to 200. The results obtained are summarized
on Figure 2. We observe that classifiers produced on a dataset with no extra noise have
an accuracy a little lower than that of the classifiers tested by Gunnar Rätsch, with a very
reasonable variance. We additionally note that, when the classification noise amount ar-
tificially grows, the achieved accuracy decreases very weakly and the variance grows
rather slowly. It is particularly striking since again, the sample complexities used are
far from meeting the theoretical requirements; moreover, it is interesting to see that the
results are good even if no separation margin exists. We can also note that when the
actual values of the accuracies (not reported here for sake of space) are compared, KGS
and KPCA roughly achieve the same accuracies and both are a little (not significantly
though) better than random projection. Eventually, the main conclusion from the nu-
merical simulations is that RP-classifier has a very satisfactory behavior on real data.

Toy Problems. We have carried out additional simulations on five 2-dimensional toy
problems. Due to space limitations however, we only discuss and show the learning
results for three of them6 (cf. Figure 3). Here, we have used the KGS projection since
due to the uniform distribution of points on [−10; 10] × [−10; 10], random projections
provide exactly the same results. For each problem, we have produced 50 train sets and
50 test sets of 2000 examples each. Note that we do not impose any separation margin.

We have altered the data with 5 different amounts of noise (from 0.0 to 0.40), 12
Gaussian kernel width (from 10.0 to 0.25) and 12 projection dimensions (from 5 to
200) have been tested and for each problem and for each noise rate, we have selected
the couple which minimizes the error rate of the produced classifier (proceeding as
above). Figure 3 depicts the learning results obtained with a noise rate of 0.20.

The essential point showed by these simulations is that, again, RP-classifier is very
effective in learning from noisy nonlinear distributions. Numerically (the numerical
results are not reported here due to space limitations), we have observed that our algo-
rithm can tolerate noise levels as high as 0.4 and still provide small error rates (around
10%). Finally, our simulations show that the algorithm is tolerant to classification noise
and thus illustrate our theoretical results, while extending already existing experiments
to this particular framework of learning.

6 Full results are available at http://hal.archives-ouvertes.fr/hal-00137941
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Fig. 3. Toy problems: first row show the clean concepts with black disks being of class +1 and
white ones of class -1. Second row shows the concept learned by RP-classifier with a uniform
classification noise rate of 0.20 and KGS projection.

6 Conclusion and Outlook

In this paper, we have given theoretical results on the learnability of kernel perceptrons
when faced to classification noise. The keypoint is that this result is independent of
the dimension of the kernel feature space. In fact, it is the use of finite-dimensional
projections having good generalization that allows us to transform a possibly infinite
dimensional problem into a finite dimension one that, in turn, we tackle with Bylan-
der’s noise tolerant perceptron algorithm. This algorithm is shown to be robust to some
additional ‘projection noise’ provided the sample complexity are adjusted in a suitable
way. A better characterization of the projection noise, more intelligent than ’malicious’,
could, in a future work, allow us to use projection dimensions appreciably smaller. Sev-
eral simulation results support the soundness of our approach. Note that the random
projection procedure using Johnson-Lindenstrauss lemma, described in [13], could be
associated with RP-learn and would lead to lower sample and time complexities for the
perceptron learning step.

Several questions are raised by this work. Among them, the question about the gen-
eralization properties of the Kernel Gram-Schmidt projector: we think tight general-
ization bounds can be exhibited in the framework of PAC Bayesian bounds, by ex-
ploiting, in particular, the sparseness of this projection. Resorting again to the PAC
Bayesian framework it might be interesting to work on generalization bound on noisy
projection classifiers, which would potentially provide a way to automatically esti-
mate a reasonable projection dimension and noise level. Finally, we have been recently
working on the harder problem of learning optimal separating hyperplane from noisy
distributions.
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Abstract. We study the class of hypothesis composed of linear function-
als superimposed with smooth feature maps. We show that for “typical”
smooth feature map, the pointwise convergence of hypothesis implies
the convergence of some standard metrics such as error rate or area un-
der ROC curve with probability 1 in selection of the test sample from
a (Lebesgue measurable) probability density. Proofs use transversality
theory. The crux is to show that for every “typical”, sufficiently smooth
feature map into a finite dimensional vector space, the counter-image of
every affine hyperplane has Lebesgue measure 0.

The results extend to every real analytic, in particular polynomial,
feature map if its domain is connected and the limit hypothesis is non-
constant. In the process we give an elementary proof of the fundamental
lemma that locus of zeros of a real analytic function on a connected
domain either fills the whole space or forms a subset of measure 0.

1 Introduction

The issue of approximation of classifiers (or hypothesis, in the language of ma-
chine learning theorists) and of convergence of sequences of classifiers to limits is
encountered very often in the theoretical research and practical applications of
supervised machine learning. This is explicit in some algorithms such as boosting
or online learning which stop after predefined number of iterations and implicit in
some practical solvers such as LIBSVM’s implementation of SMO algorithm [1]
which is in fact an iterative procedure with a stopping criteria depending on a
predefined precision constant.

The performance of classifiers is typically measured by metrics, in particular,
the error rate (err) or the area under receiver operating characteristic (aroc).
Such metrics are fully determined by the values of a classifier on the test set.
However, this dependence could be non-continuous, as it is exemplified by the
above two metrics. With what confidence and under what conditions we can
claim that given a metric and a sequence of classifiers converging (pointwise)
to a limit classifier, the sequence of values of a metric evaluated for these clas-
sifiers also converges to the metric value for the limit? It is easy to see that

M. Hutter, R.A. Servedio, and E. Takimoto (Eds.): ALT 2007, LNAI 4754, pp. 343–357, 2007.
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potential problems exist. Indeed, given a converging, non-constant, sequence of
linear classifiers we can select a malicious test set (e.g. fully positioned on the
zero-hyperplane of the limit) such that test error rates for the classifiers do not
converge to the error rate evaluated for the limit. It is somewhat harder to show
that such malicious test sets can arise ‘spontaneously’, say by random sampling
from a Lebesgue measurable density on the input space for some non-linear
hypothesis classes, where the hypothesis is generated by an algorithm from ran-
domly sampled training data. We show such examples in Section 2 mainly as an
illustration of technical issues to be dealt with by transversality theory in the
main Section 3. Accepting that the discontinuity of metrics can occur, at least
theoretically, the question arises as to what extent one should be concerned with
this issue. Actually, there are two questions hidden here:

(i) To what extent it impacts on everyday practice and
(ii) To what extent this is an issue for theorists producing rigorous theorems.

Concisely, our results say that in some popular applications such as kernel ma-
chines with a polynomial or radial basis kernel, the discontinuities does not occur
with probability 1. However, the rigorous proofs should observe some special as-
sumptions and restriction, e.g. analyticity or conditions assuring “thinness” of
kernels, implicit in Corollary 3.

The starting point for discussion of these issues is an observation that the
problem is practically non existent in the linear case, i.e. for linear classifiers

f : R
N → R, z �→ z · w + b,

where w ∈ R
N and b ∈ R, when the test data is sampled from an N -dimensional

Lebesgue measurable probability density. This is attributed to the fact that any
level set f(z) = const has measure 0, being an (N − 1)-dimensional hyperplane.
However, this picture changes if kernel machines are used, with associated feature
maps Φ : R

n → R
N . Although we can still conceptualize a classifier as a linear

function f on the feature space R
N , the data resides on a subset Φ(Rn) ⊂ R

N

of measure 0. The relevant probability measure in this case is n but not N -
dimensional, originally residing on R

n and then ‘pushed up’ to Φ(Rn) ⊂ R
N

by the mapping Φ. The level (sub) sets of the composed classifier, defined as
solutions of the equation

f ◦ Φ(x) = w · Φ(x) + b = const (1)

for x ∈ R
n, may have n-dimensional Lebesgue measure �= 0; indeed, for every

Lebesgue measurable probability density such C∞-smooth feature map can be
easily constructed. Moreover, in Section 2 we show examples that this can re-
sult in discontinuity of standard performance metrics for naturally converging
sequences of kernel machines.

Now we have arrived to the technical crux of the paper which is as follows. We
specify conditions for the feature map Φ under which the level subsets (1) have
always Lebesgue measure 0. In other words, we specify the conditions for the
counter-image Φ−1(H) ⊂ R

n to be a subset of measure 0 for any affine hyper-
plane H ⊂ R

N , see Figure 1. Furthermore, we show that feature mappings which
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fail these conditions are ‘exceptional’, so that the ‘typical’ majority of feature
mappings has the desired property of Φ−1(H) always having measure 0, resulting
in continuity of performance metrics. The way we have casted the problem so far
lends itself to methodology of transversality theory [2, 3, 4]. The main link is to
observe that the equations for the level subsets (1) having measure 0 can be for-
mulated as conditions for derivatives of the feature map Φ, see Lemma 1, which
in turn leads to conditions for transversality of submanifolds in the appropriate
‘jet’ spaces (Theorem 4). Then the ‘typical majority’ of transformations Φ with
desired continuity property is specified in terms of a residual dense subset in a
Whitney topology on the space of feature maps. In the process we prove that for
a real analytic1 transformation Φ, the level subsets (1) have the desired property
of measure 0 (Proposition 1). In this case it is natural to restate the problem in
terms of the so-called kernel function [5,6,7]. This allows covering simultaneously
the case of infinite dimensional feature space, which occurs, for instance, for the
popular radial basis kernel. The conclusion here is that the popular polynomial
or radial basis kernels are ‘well behaving’, so discontinuity of the performance
metrics does not occur with probability 1 in the selection of a test set.

Fig. 1. An illustration for the technical crux of the paper: for any ‘typical’, sufficiently
smooth feature map Φ : U → R

N , U ⊂ R
n, n < N , the counter-image Φ−1(H) ⊂ R

n

of any affine hyperplane H ⊂ R
N has measure 0. In other words, Φ(U) is very ‘wiggly’

and cannot contain ‘thick flat parts’. This also holds for any real analytic, in particular
polynomial, feature map Φ, if U is connected and Φ(U) �⊂ H .

2 Convergence of Metrics for Thin Limit Hypothesis

Throughout this section we assume that X ⊂ R
n is a subset of positive n-

dimensional Lebesgue measure [8] and that there is chosen a Lebesgue measur-
able probability density on X × {±1} ⊂ R

n × {±1} with both subset X × {−1}
and X×{+1} having positive probability. We assume that the finite data subsets,
1 A transformation is called analytic if it is locally equal to its Taylor sequence expan-

sion about every point of its domain.
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the training set X = {(xi, yi)}i=1,...,m and the test set X
′ = {(xi, yi)}i=1,...,m′ ,

are randomly drawn from X × {±1} with this probability density and contain
data samples from both labels.

As it has been indicated already we are concerned here with the classes of
functions f : X → R, synonymously called hypothesis. The hypothesis of partic-
ular interest are of the form

x �→ w · Φ(x) + b,

where Φ : X → R
N is called feature map and R

N is called a feature space.
Another class of hypothesis are kernel machines of the form

f(x) :=
m∑

i=1

βik(xi, x) + b, (2)

where xi ∈ X is a training sample, βi ∈ R, for i = 1, ..., m and k : X×X → R is a
function called a kernel. Note that for our considerations we do not require, unless
explicitly stated, that k is symmetric and positive definite, which are the typical
additional assumptions on kernel in the machine learning literature [5,6,7]. These
additional conditions characterise a special class of kernel functions having the
form

k(x, x′) = Φ(x) · Φ(x′)

for a suitably chosen feature map Φ : R
n → H into a Hilbert space (H, · ).

2.1 Thin Hypothesis

We say that a subset A of R
n is negligible if it has n-dimensional Lebesgue

measure 0 [8, 2]. We recall that this means that for every ε > 0 there exists a
sequence K1, K2, ... of hyper-cubes with

A ⊂
⋃
i

Ki &
∑

i

vol(Ki) < ε.

Any union of a countable number of negligible subsets is negligible.
Thin hypothesis. We say that the function (hypothesis) f : X �→ R is thin if

its level subsets f−1(v) ⊂ R
n are negligible for v ∈ R .

Thin feature map. A feature map Φ : X → R
m is called thin if every

hypothesis f(x) := w · Φ(x) + b �≡ const is thin, for w ∈ R
m and b ∈ R.

Thin kernel. A kernel function k : X × X → R is called thin if every kernel
machine (2) which is �≡ const is a thin hypothesis, for every xi ∈ X and βi, b ∈ R,
i = 1, ..., m and every m = 1, 2, ....

2.2 Performance Metrics

Now we introduce formally two performance metrics which will be used in our
formal results. We consider a hypothesis f : R

n → R and a non-void test subset

X
′ = {(xi, yi)}i=1,...,m′ ⊂ R

n × {±1}
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containing samples from both labels. By X
′
− and X

′
+, we denote the subsets of

examples with negative (yi = −1) and positive (yi = +1) labels, respectively.
The first metric is the typical Error Rate:

err(f, X′) :=
#{i ; yif(xi) ≤ 0 for (xi, yi) ∈ X

′}
#X′ .

The second metric is the Area under the Receiver Operating Characteristic
curve (aroc)2, i.e. the area under the plot of true positive vs. false positive rate
while decision threshold is varied over the whole range of possible values [9].
Following [10] we use an order statistics formulation:

aroc(f, X′) =
# {(i, j) | f(xi) < f(xj) & − yi = yj = 1}

#X′− × #X′
+

+
1
2

P= [f, X′] ,

where

P=[f, X′] :=
# {(i, j) | f(xi) = f(xj) & − yi = yj = 1}

#X
′− × #X

′
+

(3)

is the probability that two test points with different labels obtain the same score.
The expected value of AROC(f, X′) for the trivial uniformly random predictor

is 0.5. This is also the value for this metric for the trivial constant classifier
mapping all X

′ to a constant value, i.e. ≡ yo ∈ R.

2.3 Limits for Metrics

Theorem 1. Assume that a sequence f1, f2, ... of hypothesis is pointwise con-
verging to a limit f , which is a thin hypothesis on X. For either of the two
metrics, μ = aroc or μ = err, the following equality holds

lim
n→∞ μ (fn, X′) = μ (f, X′) , (4)

with probability 1 (in selection of the test set X
′).

Proof. The classifiers fn are pointwise convergent to the limit f , hence we have
the upper bounds:

∣∣∣ lim
n→∞aroc (fn, X′) − aroc (f, X′)

∣∣∣ ≤ 1
2

P= [f, X′] , (5)
∣∣∣ lim
n→∞err (fn, X′) − err (f, X′)

∣∣∣ ≤ P0 [f, X′] , (6)

where P0 [f, X′] :=
#(f−1(0)∩X

′)
#X′ . The hypothesis f is thin hence the event that

X
′ contains two data points which are mapped by f to the same value has

probability 0. Thus, with probability 1, P= [f, X′] = P0 [f, X′] = 0. 
�
2 Also known as the area under the curve, AUC; it is essentially the well known order

statistics U .
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2.4 A Counterexample

The following result shows that there exist non-thin smooth kernels. Moreover,
we shall show that there exist sequences of kernel machines which pointwise
converge but are such that the limits do not extend to the corresponding limits
for either performance metric aroc or err. We shall introduce the sequences of
converging machines first.

Given a constant λ > 0, a training set X = {(xi, yi)}i=1,...,m and a kernel
function k such that the matrix [k(x′

i, x
′
j)

]
1≤i,j≤m′ is positive semidefinite for

any selection of samples x′
i ∈ X , i = 1, ..., m′ and every m′ = 1, 2, .... In such

a case there exists a map Φ : X → R
m such that k(xi, x) = Φ(xi)T · Φ(x) for

every i = 1, ..., m and every x ∈ X . We consider a homogeneous kernel machine

fλ(x) :=
m∑

i=1

βik(xi, x) =
m∑

i=1

βiΦ(xi) · Φ(x),

where coefficients (βi) are defined as minimizers of the following functional (reg-
ularised risk):

(βi) = arg min
βi

λ

m∑
i,j=1

βiβjk(xi, xj) +
m∑

i=1

(
yi −

m∑
j=1

βjk(xj , xi)
)2

. (7)

This is the well known ridge regression solution which can be also defined by the
following closed form formula for sufficiently small λ > 0 [6]:

fλ(x) = y
(
λI + Φ(X)T Φ(X)

)−1
Φ(X)T Φ(x), (8)

where Φ(X) := [Φ(x1), ..., Φ(xm)
]

is the m × m matrix and y = [y1, .., ym]T .
It is known that the following pointwise limits exist

lim
λ→∞

λfλ(x) = fcentr(x) :=
m∑

i=1

yi

m(yi)
k(xi, x), (9)

lim
λ→0+

fλ(x) = yΦ(X)†Φ(x) = fregr(x), (10)

for any x ∈ X , where fregr(x) is the ordinary regression, i.e. the solution of (7)
for λ = 0. In Eqn. 10, ‘†’ denotes the Moore-Penrose pseudoinverse [11]

A† := lim
λ→0+

(AT A + λI)−1AT = lim
λ→0+

AT (AAT + λI)−1. (11)

The equation (9) is a special case of [12, Theorem 2], while the justification of
(10) follows easily from (8).

Theorem 2. There exists a C∞-smooth kernel k : R
n × R

n → R which is
not thin. Moreover, for either metric μ = aroc or μ = err, the following
inequalities hold with probability > 0 in selection of the training and test subset:

lim
λ→∞

μ

(
fλ, X′

)
= lim

λ→∞
μ

(
λfλ, X′

)
�= μ

(
lim

λ→∞
λfλ, X′

)
= μ

(
fcentr, X

′),

lim
λ→0+

μ

(
fλ, X′

)
�= μ

(
lim

λ→0+
fλ, X′

)
= μ

(
fregr, X

′).
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We emphasize that the following result holds for every Lebesgue measurable
probability density on X × {±1} ⊂ R

n × {±1}.

Proof outline. The proof consists in a construction of an example such that the
right-hand-side of the upper bounds (5 - 6) is non-zero and actually equal to the
discrepancy for the corresponding limits.

The idea is sketched in Figure 2. First we construct a seven-point dataset(
(zi, yi)

)
⊂

(
R

2 × {±1}
)7, four points for training (blue and red circles) and

three points for a ‘malicious’ testset X
′ (blue and red squares). It is insured

that for the (linear) ridge regression solutions wλ, the homogeneous classifiers
fλ(z) := wλ · z, z ∈ R

2 classify correctly the testdata, hence aroc(fλ, X′) = 1
and err(fλ, X′) = 0 for any λ > 0. The limit limλ→∞ λwλ exists and is precisely
the directional vector of the centroid of the training data [12]

wcentr :=
1
2

∑
i,yi=+1

yizi,

which a vector of the form [C, 0]T ∈ R
2, C > 0. However, the centroid

fcentr(z) := wcentr · z maps two of the three test samples to 0. Consequently,
aroc(fcentr, X

′) = 0.75 and err(fcentr, X
′) = 1/3. Hence, the test set values of

the performance metric for any linear hypothesis λfλ differs from that for their
limit as λ → ∞.

The extension to the general case relies on an observation that for any Lebesgue
measurable probability density on X × {±1} ⊂ R

n × {±1} there exist a feature
mapping Φ : X → R

2 which maps data onto the points of the example with posi-
tive probability (in Figure 2 we illustrate this for n = 1). Indeed, even more gen-
erally, using a smooth partition of unity it can be easily shown [2] that for any
values v1, ..., vs ∈ R

2 and any s disjoint closed subsets of V1, ...., Vs ⊂ R
n there

exists C∞ feature mapping Φ : R
n → R

2 such that Vi ⊂ Φ−1(vi) for i = 1, ..., s.
Hence it is sufficient to select the subsets Vi such that Vi ×{−1} or Vi ×{+1} has
positive measure according to the probability measure on X ×{±1}, respectively.
Finally, the kernel is defined as k(x, x′) := Φ(x) · Φ(x′). �

3 Theorems on Abundance of Thin Hypothesis

Let r ≥ 0 be an integer. Let P r(Rn; RN) denote the vector space of polynomial
maps of degree ≤ r from R

n to R
N . It has dimension m × dr

n, where

dr
n :=

r∑
i=0

(
n + i − 1

i

)

is the dimension of the vector space of polynomials of degree ≤ r in n-variables.
In particular, d0

n = 1, d1
n = n + 1 and d2

n = (n + 1)(n + 2)/2.
Let us consider an open non-empty subset U of R

n and a transformation f =
(f1, ..., fN ) : U → R

N . We say that f is Cr-smooth, and write f ∈ Cr(U, RN),
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Φ Φ

λλ

Fig. 2. Illustration to the proof of Theorem 2. The right-hand figure shows an idea
of a four point training set (“+” and “-” circles) and a malicious three point test
set (“+” and “-” squares) in R

2 with a properties as follows. For the (trained) ridge
regression classifiers fλ(z) := wλ · z the limit limλ→∞ λfλ(x) = fcentr(x) exists but
it does not extend to the level of performance metrics. Indeed, err(λfλ(x), X′) = 0 �=
1/3 = err(fcentr, X

′); similarly, aroc(λfλ(x), X′) = 1 �= 0.75 = aroc(fcentr, X
′) for

λ > 0. This is then shown to occur with probability > 0 for a smooth kernel k on R

and with training and test set samples from a continuous probability density on R
2.

We construct such a kernel k(x, x′) := Φ(x) · Φ(x′) on R, by choosing Φ : R → R
2

which maps multiple input samples onto the seven points in R
2 as indicated, e.g. with

a positive probability for any Gaussian distribution on R.

where r ∈ {1, 2, ...}, if it has all partial derivatives of order ≤ r and they are
all continuous functions on U . Additionally, we say f is C∞-smooth if f is Cr-
smooth for any finite r = 1, 2, ...; we write f ∈ Cω(Rn, RN ) and call f a real
analytic function if it is additionally locally equal to its Taylor series expansion
about every point of its domain. It is well known that Cω �= C∞.

3.1 Main Results for Analytic Hypothesis

Theorem 3. Any analytic hypothesis �≡ const is thin.

The formal proof is shifted to Section 4, where we show a slightly reformulated
result, Proposition 1.

Corollary 1. All analytic kernels k ∈ Cω(Rn × R
n, R) and all feature maps

Φ ∈ Cω(Rn, RN ) are thin, for n, N = 1, 2, ....

Proof. This is an instantaneous conclusion from Theorem 3 as for such k the
kernel machine (2) is an analytic function on R

n. Similarly, the hypothesis x �→
w · Φ(x) + b is analytic for every (w, b) ∈ R

N × R. �

As every polynomial is an analytic function, we have:
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Corollary 2. All polynomial hypothesis �≡ const, all polynomial kernels and all
polynomial feature maps are thin.

3.2 Main Results for Non-analytic Hypothesis

For the formulation of the result in this section we need a constructive way of
saying that a property is “almost always true” or “typical”. Ideally, this should be
equivalent to stating that it holds for an open and dense subset in some “natural”
topology. This condition is often a little bit too strong in practice. Fortunately, in
an important class of Baire spaces, it can be replaced by a concept of a residual
subset. The formal definitions follow.

A subset of a topological space which is an intersection of a countable family
of open and dense subsets is called residual. A Baire space is a topological space
in which every residual subset is dense in it. Note that an intersection of a
countable family of residual subsets is a residual subset. The Euclidean space
R

m with the natural topology is an example of a Baire space [13, 2, 4].

Theorem 4. Let ∅ �= U ⊂ R
n be an open connected subset, Φ ∈ Cr(Rn, RN)

and an integer r ≥ 1 be such that n + dr
n > N . There exists a polynomial

p ∈ P r(Rn, RN ) such that the feature mapping Φ+p is thin. Moreover, the set of
such polynomials contains a dense residual subset of P r(Rn, RN ) with negligible
complement.

The proof is given in Section 4.3.
For the following result we need to introduce a topology on the space of

feature maps Cr(Rn, RN ), where r = 1, 2, ..., ∞. Let us define first the operator
of mixed partial derivatives f �→ ∂αf for a multi-index α = (α1, α2, · · ·αn) of
integers αi ≥ 0:

∂αf(x) :=
∂|α|f

∂xα1
1 · · ·∂xαn

n
(x)

where |α| := α1 +α2 + · · ·+αn, x ∈ R
n. In our case it is very straightforward to

define the Cr-Whitney topology via specification of the neighborhood basis [13,2].
This is defined as the family of all sets of the form

{g ∈ Cr(Rn, RN ) ; ‖∂αf(x) − ∂αg(x)‖ < δ(x) ∀x ∈ R
n},

for all f ∈ Cr(Rn, RN ), all α such that |α| ≤ r and all δ : R → R
+. It is well

known that Cr(Rn, RN ) with Cr-Whitney topology is a Baire space [2, 3, 4].
The Cr-Whitney topology, sometimes called fine topology [4], allows for a

fine controll of perturbations at “infinity”, which is not possible with coarser
topologies such as the topology of uniform Cr convergence on compact set, used
in [4] or the natural topology on the polynomial perturbations P r(Rn, RN ) used
in Theorem 4.

Corollary 3. Let r ≥ 1 and n + dr
n > N or r = ∞. The subset of all thin

feature maps in Cr(Rn, RN ) contains a dense residual subset of Cr(Rn, RN)
with Cr-Whitney topology.
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The proof uses the smooth partitions of unity and the fact (Weierstrass’ The-
orem) that polynomials are dense in Cr(K, RN ) with the topology induced
from the Cr-Whitney topology on Cr(Rn, RN ) by restrictions to a compact set
K ⊂ R

n. Details are omitted.

4 Key Proofs

This section contains main technical result: an application of Thom transversal-
ity theorem to characterisation of zeros of compositions of linear functions with
smooth transformations. We derive also a characterisation of zeros of analytic
functions. We start with introduction of basic definitions and notation.

4.1 The Space of r-Jets

Let r ≥ 0 be an integer. For every open set U ⊂ R
n we write

Jr(U ; RN) = U × P r(Rn; RN )

and call this the space of jets of order r of maps from U to R
N .

Let f : U → R
N be a Cr-map, where r = 1, 2, ... and let a ∈ U . Write the

Taylor expansion for f in the form

f(a + h) = (jr
af)(h) + (Rr

af)(h) (12)

= f(a) +
∑
α

∂f

∂xα
(a)hα + · · · + (Rr

af)(h) (13)

=
∑

α1,···αn≥0
0≤|α|≤r

1
α1! · · ·αn!

∂αf(a)hα1
1 · · · hαn

n + (Rr
af)(h), (14)

with jr
af ∈ P r(Rn; RN ) and (Rr

af)(h) = o(‖h‖r). We say that jr
af is the jet of

order r or r-jet of f at a. The maps

jr
∗f : U → P r(U, RN), (jr

∗f)(a) = jr
af,

jrf : U → Jr(U, RN ), (jrf)(a) = (a, jr
∗f) = (a, jr

af)

are called the r-jet of f . In particular we have j0f(a) = (a, f(a)),

j1f(a) =
(
a, f(a), df(a)

)

=

(
a, (fi(a))1≤i≤N ,

(
∂fi

∂xj
(a)

)
1≤i≤n
1≤l≤N

)
∈ R

n × R
N × R

nN .

4.2 Locus of Zeros of Smooth Functions

For completeness we recall now a simplified concept of submanifold and transver-
sality [2,3,4]. We say that W ⊂ R

m is a Cr-submanifold for r ∈ {1, 2, ....,∞, ω}
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of dimension d, 1 ≤ d ≤ m if for every zo ∈ W there exists and open neighbour-
hood zo ∈ Uzo

⊂ R
m, an open subset V ⊂ R

m and a Cr-smooth diffeomorphism
φ = (φi) : Uzo → V , called a local co-ordinate map, such that

φ(W ∩ Uzo
) = {(zi) ∈ V ; zd+1 = zd+2 = · · · = zm = 0}.

The difference m − d is called co-dimension of W and is denoted codimW . If
codimW > 0, then W ⊂ R

m is a subset of measure 0 [8, 2, 4].
We say that the transformation f : R

n → R
m is transversal to the submanifold

W if for every zo ∈ f(Rn) ∩ W and every xo ∈ f−1(zo) we have

rank[∂j(φi ◦ f)(xo)] d<i≤m
1≤j≤n

= m − d = codimW.

Note that rank[∂j(φi ◦ f)(xo)] ≤ n, hence if codimW > n, the transversality of
f to W means that that W ∩ f(Rn) = ∅.

Lemma 1. Let r ≥ 1 be an integer and f ∈ Cr(U, R), where U ⊂ R
n is an open

subset. Then the subset f−1(0)\(jr∗f)−1(0) of R
n is negligible.

Proof. Proof is by induction on r.
Case r = 1. Let x0 ∈ f−1(0)\(j1

∗f)−1(0) and i be an index such that ∂f
∂xi

(x0) �=
0. By implicit function theorem [4] there exists an open subset Ux0 ⊂ U such that
f−1(0)∩ Ux0 is an (n − 1)-dimensional submanifold (since the equation f(x) = 0
can be solved for the ith variable). Thus f−1(0) ∩ Ux0 has measure 0 [4, 2]. Now
note that f−1(0)\(j1∗f)−1(0) can be covered by countably many such subsets Ux0 ,
hence it is negligible.

Case r > 1. Assume that the lemma holds for r ← 1, 2, ..., r−1. We will show
that in such a case f−1(0) \ (jr∗f)−1(0) is negligible. Each function ∂αf for a
multi-index α = (α1, α2, · · ·αn), |α| = r − 1, is C1-smooth on U . We can write

f−1(0) =
[
f−1(0) \ (jr−1

∗ f)−1(0)
]
∪ (jr−1

∗ f)−1(0)

=
[
f−1(0) \ (jr−1

∗ f)−1(0)
]
∪

[⋃
α

∂αf(0) \ (j1
∗∂αf)−1(0)

]
∪ (jr

∗f)−1(0),

where the union
⋃

α is over all multi-indices α = (α1, α2, · · ·αn) such that |α| =
r−1. By the inductive assumption the term in the first square bracket is negligible
and the second square bracket term is negligible as the finite union of sets which
are negligible by the proof of Case r = 1. Thus f−1(0) \ (jr

∗f)−1(0) is negligible
being contained in the union of these two negligible terms. 
�
Proposition 1. Let U be a connected non-empty open subset of R

n. If f ∈
Cω(U ; R), then either f ≡ 0 or f−1(0) ⊂ R

n is negligible.

In the case of complex analytic functions (holomorphic) the analog of this re-
sult can be deduced relatively easily from the so called Weierstrass Preparatory
Theorem [2], though some non-trivial work will be required if justification is to
be made rigorous and that require more effort than the following direct proof3.
3 In a nutshell, the Weierstrass theorem implies that the locus of zeros of a holomorphic

extension to C
n ≈ R

2n is negligible in 2n-dimensional Lebesgue measure, but we
need to deduce that the locus of the original real analytic function is negligible in
n-dimensional Lebesgue measure on R

n.
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Proof. Let A ⊂ U be a compact connected subset. The set U is a countable
union of such sets A, hence it is sufficient to prove that either f |A ≡ const or
the set A ∩ f−1(0) is negligible.

Consider the descending sequence of closed subsets (they are compact if �= ∅):

A ⊃ A ∩ (j1
∗f)−1(0) ⊃ A ∩ (j2

∗f)−1(0) ⊃ · · · ⊃ A ∩ (jr
∗f)−1(0) ⊃ · · · .

There are two possibilities.

(i) The sequence does not terminate. In such a case there exists

x0 ∈
∞⋂

r=1

(jr
∗f)−1(0) ∩ A �= ∅

by virtue of Riesz condition for compact spaces [13]. The Taylor expansion of
the analytic function f around x0 is identically 0, hence f ≡ 0 near x0, hence
on the whole connected domain U .

(ii) The above sequence terminates, i.e. there exists r0 such that (jr
∗f)−1(0)∩

A = ∅ for r ≥ r0. In such a case

A ∩ f−1(0) = A ∩ f−1(0) \ (jr0∗ f)−1(0) ⊂ f−1(0) \ (jr0∗ f)−1(0)

is negligible by Lemma 1. 
�

The assumption of analyticity in the above lemma is essential as the lemma does
not hold for some C∞-functions. The function f ∈ C∞(R), defined as exp(−x−2)
for x > 0 and 0 otherwise is a counter example here. Note that for any closed
subset V ⊂ R

n there exists f ∈ C∞(Rn, R) such that V = f−1(0) [2].

4.3 Characterisation of Typical Cr-Smooth Feature Maps

In this section we show the key lemma facilitating application of the Thom
transversality theorem to the proof of our main result, Theorem 4.

Let us consider the subset

W :=

{
(b, x1, ..., xm) ∈ R

s × (Rd)N ; ∃0	=(wi)∈RN

N∑
i=1

wixi = 0

}
. (15)

Lemma 2. If d > N , then we have a decomposition W =
⋃N−1

q=1 Wq, where
Wq ⊂ R

s × (Rd)N is an analytic submanifold of codimension

codim(Wq) = (d − q)(N − q) ≥ d − N + 1 (16)

for q = 1, 2, ..., N − 1.

Proof. For any (b, x1, ..., xN ) ∈ R
s × (Rd)N the condition

∃0	=(wi)∈RN

N∑
i=1

wixi = 0

is equivalent to
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rank [x1, ..., xN ] < N,

where [x1, ..., xN ] denotes d × N -matrix with column vectors xi ∈ R
d. Let

Wq :=
{
(b, x1, ..., xN ) ∈ R

s × (Rd)N ; rank [x1, ..., xN ] = q
}

,

for q = 1, ..., N − 1. Obviously W =
⋃N−1

q=1 Wq. It remains to show that Wq is a
submanifold of the codimension (d− q)(N − q). To that end, in [14, Chapter 2.2]
we find an explicit proof that the subset of d × N matrices of rank q forms an
analytic, hence C∞ smooth, sub-manifold of R

dN of dimension q(d + N − q).
This implies immediately

codim(Wq) = s + dN − (s + q(d + N − q)) = (d − q)(N − q) ≥ d − N + 1

for every q = 1, 2, ..., N − 1. �

Proof of Theorem 4. Let the assumptions of the theorem hold. Let Φ = (φi) ∈
Cr(Rn, RN ), p = (pi) ∈ P r(Rn, RN ) and (w, b) ∈ R

N × R. We define

fΦ+p,w,b(x) := w ·
(
(Φ + p)(x)

)
+ b

for x ∈ R
n. By Lemma 1 the subset

f−1
Φ+p,w,b(0)\ (jr

∗fΦ+p,w,b)
−1 (0) ⊂ R

n

is always negligible. Thus in order to show that fΦ+p,w,b is thin, i.e. that
f−1

Φ+p,w,b(v) is negligible for all v ∈ R, it is sufficient to show that

(jr
∗fΦ+p,w,b)−1(v) = ∅

or, equivalently, after absorbing v into the bias b, that for a sufficiently large r,

m∑
i=1

wi jr
∗(Φi + pi)(x) + b �= 0 ∈ Jr(Rn, R) (17)

for all 0 �= w = (wi) ∈ R
N , b ∈ R.

For completion of the proof we shall show that the set of polynomials p sat-
isfying (17) contains a subset S which is a dense residual subset of P r(Rn, RN)
with negligible complement.

Let P r
H(Rn, RN ) denote the subset of all homogeneous polynomials in

P r(Rn, RN ) and for f ∈ Cr(Rn, RN ) let jr
Hf ∈ P r

H(Rn, RN ) denote the ho-
mogeneous part of the jet jrf , i.e. all polynomial terms of order 1 or higher.
The vector space P r

H(Rn, RN ) has dimension N(dr
n − 1). We have isomorphisms

P r(Rn, R) = R × P r
H(Rn, R) = R × R

dr
n−1, thus

Jr(Rn, RN ) = R
n × P r(Rn, RN ) = R

n+N ×
(

R
dr

n−1
)N

.
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Let W and Wq be defined as in (15) and Lemma 2 (with the substitutions
s ← n + N and d ← dr

n − 1). Hence

W =
N−1⋃
q=1

Wq ⊂ Rn+N × (Rdr
n−1)m = Jr(Rn, RN ),

where each Wq ⊂ Jr(Rn, RN ) is a submanifold of codimension (see Eqn. 16):

codim(Wq) = (dr
n − 1 − q)(N − q) > dr

n − N > n, (18)

where the last inequality is the theorem’s assumption. The definition of W means
that for Ψ = (Ψi) ∈ Cr(Rn, RN ) we have

jrΨ(x) �∈ W ⇔ ∀(wi) 	=0

N∑
i=1

wi jr
HΨi(x) �= 0 ∈ P r

H(RN , R). (19)

According to the ‘concrete’ version of the Thom transversality theorem [4, Propo-
sition 3.9.1] the set S of those polynomials p ∈ P r(Rn, RN ), where the map
jr(Φ + p) is transversal to every Wq, is dense residual with negligible comple-
ment. The inequality (18) implies that transversality in our case means that
Wq ∩ jq(Φ + p)(Rn) = ∅ for every q = 1, ..., N − 1 [4]. Hence

jr(Φ + p)(x) �∈ W

for every p ∈ S and x ∈ R
n. Now, an application of (19) for Ψ = Φ + p implies∑

i wi jr
H(Φ + p)(x) �= 0 for all 0 �= (wi) ∈ R

N proving that (17) holds for every
p ∈ S. �

5 Discussion

Note that in order to make use of Thom transversality theorem it is necessary
to move from the feature space R

N to the space of higher order jets, Jr(U, RN),
r ≥ 1. More specifically, for any differentiable feature mapping Φ : R

n → R
N

there exists a hyperplane H ⊂ R
n, which are non-transversal to Φ at some

points x ∈ U . This will be in particular a case of hyperplane H tangent to Φ(U)
(see Fig. 1). Thus of necessity, we have reformulated our original problem (of
characterisation of the thin feature map) into a set of transversality conditions in
Jr′

(U, RN ), r′ = 1, ..., r−1: they are implicit in the key Lemma 1 and equivalent
to jr′

f(x) �= 0.
Theorem 2 shows that there exist non-thin Cr-smooth feature maps. Theo-

rem 4 and Corollary 3 show that such feature maps are exceptional and disappear
under suitable perturbations, in particular under polynomial perturbations from
a dense residual set.
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Abstract. Our purpose is to estimate conditional probabilities of out-
put labels in multiclass classification problems. Adaboost provides highly
accurate classifiers and has potential to estimate conditional probabili-
ties. However, the conditional probability estimated by Adaboost tends
to overfit to training samples. We propose loss functions for boosting
that provide shrinkage estimator. The effect of regularization is realized
by shrinkage of probabilities toward the uniform distribution. Numerical
experiments indicate that boosting algorithms based on proposed loss
functions show significantly better results than existing boosting algo-
rithms for estimation of conditional probabilities.

1 Introduction

Over the past two decades, statistical learning methods have been highly devel-
oped. Boosting [1] is one of the most significant achievements in machine learn-
ing. By applying boosting to a so-called weak learner such as decision trees, one
will obtain accurate classifiers or decision functions. That is, boosting is regarded
as a meta-learning algorithm. Friedman et al. [2] pointed out that boosting algo-
rithms are derived from coordinate descent methods for loss functions. Friedman
et al.’s work also clarified that boosting has the potential to estimate conditional
probabilities. Indeed, there is the correspondence between decision functions and
conditional probabilities. Thus, the correspondence provides an estimator of prob-
abilities based on estimated decision functions given by boosting algorithm. In
practice, however, common boosting algorithms, such as Adaboost [1] or Logit-
boost [2], do not provide reliable estimator of conditional probabilities.

In this paper, we propose loss functions for multiclass boosting algorithms
that provide more accurate estimate of conditional probabilities than Adaboost
or Logitboost. The estimation accuracy is measured by the cross-entropy, or
Kullback-Leibler divergence [12], on the test samples. Loss functions inducing a
shrinkage estimator have a significant role in our methods.

Key ideas of boosting algorithm for conditional probability estimate are sum-
marized as follows: (i) by using appropriate loss function, one has a shrinkage
estimator of conditional probability that will reduce variance of estimation, (ii)
by slowing down learning process of boosting, one can look closely into estimates
in learning process.

We introduce boosting algorithm from the viewpoint of optimization ac-
cording to Friedman et al. [2]. First, some notations are defined. Let D =

M. Hutter, R.A. Servedio, and E. Takimoto (Eds.): ALT 2007, LNAI 4754, pp. 358–372, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Boosting based on Loss Function L:
Input: Training samples, D. Initialize f (0) = 0 ∈ F .
For m = 1, . . . , M :

– Find a weak hypothesis such as

h(m) = arg min
h∈H

∂

∂α
L(D, f (m−1) + αh)

∣∣
α=0

.

– Find a coefficient α(m) ≥ 0 attaining the minimum value of L(D, f (m−1) +
αh(m)).

– Update the decision function:
f (m) = f (m−1) + α(m)h(m).

Output: f (M).

Fig. 1. Boosting based on Loss Function L

{(x1, y1), . . . , (xn, yn)} be training samples, where xi is input vector in X and yi

is output label in Y = {1, . . . , K}. When K = 2, the problem is called binary clas-
sification, and if K > 2, it is called multiclass classification. Training samples are
independently and identically distributed from a probability μ(x)p(y|x), where μ
is a marginal distribution on X and p(y|x) is a conditional probability of output
labels such as

∑
y∈Y p(y|x) = 1 for any x ∈ X . Let us define a countable set of

functions, H = {ht : X ×Y → [−1, 1] | t ∈ Z}, where Z is a countable index set.
Weak learner outputs an element of H for given training samples. Functions in H
are referred to as weak hypothesis. The set of decision functions defined from H
is given as F =

{∑
t∈Z αtht | ht ∈ H, αt ∈ IR,

∑
t∈Z |αt| < ∞

}
. For a decision

function f ∈ F , the label of input x is predicted by ŷ := arg maxy′∈Y f(x, y′).
The loss function L(D; f) on F is used to estimate decision function. For ex-

ample, in Adaboost [1], L(D; f) = 1
n

∑n
i=1

∑
y∈Y ef(xi,y)−f(xi,yi), and in Logit-

boost, L(D; f) = 1
n

∑n
i=1 log

( ∑
y∈Y ef(xi,y)−f(xi,yi)

)
. The intuition behind these

loss functions is that the resulting optimization formulation favors small values
f(xi, y) − f(xi, yi) for all y �= yi. Therefore, it favors a decision function such
that f(xi, yi) = argmax

y∈Y
f(xi, y). Loss functions of common boosting algorithms

are shown in [2].
Boosting algorithm shown in Fig 1 searches for an approximate minimum

solution of L over F . Common learning algoriths such as decision trees are
avairable to find weak hypothesis h(m). In Adaboost algorithm for multiclass
classification problems, the minimization of ∂

∂αL(D, f +αh)
∣∣
α=0

with respect to
h ∈ H is done by the learning algorithms that minimize pseudo-loss function [1].
Easier implementation of finding hypothesis is error correcting output coding
(ECOC) [3,4], which will be briefly introduced in the next section.

2 Estimation of Conditional Probabilities

For probability estimation, we propose statistical models and loss functions.
Those loss functions are compared with existing ones.
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For a decision function f ∈ F , let us define the conditional probability qf as
qf (y|x) = ef(x,y)∑

y′∈Y ef(x,y′) , and let �(y|x; f) be the negative log-likelihood of qf ,

i.e., �(y|x; f) = − log qf (y|x) = −f(x, y) + log
∑

y′∈Y ef(x,y′).
For a decision function f ∈ F and a set of samples D = {(xi, yi) | i = 1, . . . , n},

let us define the cross entropy S(D; f) as S(D; f) = − 1
n

∑n
i=1 log qf (yi|xi). The

accuracy of estimated probability qf is measured by the cross entropy on the set
of test samples.

The class of loss functions we consider is defined as

Lφ(D; f) =
1
n

n∑
i=1

φ(�(yi|xi; f)), (1)

where φ : [0, ∞) → [0, ∞) is an increasing convex function. It is easy to see
that Lφ is convex in f . In Adaboost, φ(z) = ez, and in Logitboost, φ(z) = z is
respectively applied.

For binary problems, the loss function Lφ is reduced to well-known margin-
based loss function [5]. When Y = {1, 2} and f(x, 1) + f(x, 2) = 0 holds for
all f ∈ F and all x ∈ X , the loss function Lφ is represented as Lφ(D; f) =
1
n

∑n
i=1 U(f(xi, yi)), where U(z) = φ(log(1 + e−2z)). The loss function Lφ for

multiclass problems is regarded as a direct extension of margin-based loss func-
tions. For binary classification problems, margin-based loss functions have been
deeply investigated [5,7,8]. In the present paper, we focus on multiclass problems.

Example 1 (Lφ for binary classification). For φ(z) = z, one has U(z) = log(1 +
e−2z) that is the loss function of Logitboost for binary problems. For φ(z) =
ez − 1, U(z) is equal to e−2z that is the loss function of binary Adaboost [1,2].
The loss function U(z) = e−z is also used, and it is obtained by φ(z) =

√
ez − 1

that is not convex in z. The convexity of φ(z) in z is a sufficient condition for the
convexity of Lφ in f ∈ F , and one can apply non-convex φ if Lφ becomes convex
in f . Applying φ(z) = max{0, 1 + 1

2 log(ez − 1)}, one has U(z) = max{0, 1 − z}
that is the hinge loss function for the support vector machine [9,10].

We apply Lφ to boosting algorithm in Fig. 1. When φ is differentiable, one has

∂

∂α
Lφ(D; f + αh)

∣∣∣∣
α=0

=
n∑

i=1

∑
y∈Y

w(i, y)(h(xi, y) − h(xi, yi)), (2)

where w(i, y) denotes a weight function depending on φ. In Adaboost, the weight
function is equal to w(i, y) = ef(xi,y)−f(xi,yi)/n, and in Logitboost, w(i, y) =
qf (y|xi)/n.

Weak hypothesis h ∈ H minimizing the right-hand of (2) can be sought by
the learning technique called error correcting output coding (ECOC) [3]. ECOC
is a learning method that uses binary classification algorithms for multiclass
classification problems. In the numerical experiments in our paper, we apply
boosting with ECOC proposed by Schapire [4] to solve the minimization problem
(2) with respect to h ∈ H.
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3 Boosting with Lφ

In this section, we apply the loss function Lφ to the boosting algorithm. The
probability estimator with Lφ has shrinkage effect. That is, the deformation of
log-likelihood has same role with the regularization that is commonly used in
machine learning.

3.1 Learning Algorithm

We propose to apply the loss function Lφ for the boosting algorithm. Determin-
ing the number of the boosting step is significant to achieve accurate
estimation. We apply validation technique for estimation of the number of boost-
ing steps. First, one divides observed samples into training set Dtr and valida-
tion set Dval, and estimate decision function by applying boosting algorithm
based on Lφ over Dtr. During the boosting process, one computes values of
S(Dval; f (m)), m = 1, . . . , M , and determine the number of the iteration, m̂, at-
taining the minimum value of S(Dval; f (m)). Finally, the conditional probability
is estimated by qf(m̂) . When our concern is to estimate accurate classifier, the
cross entropy is replaced by the error rate on the validation set. Cross validation
can be also applied to estimate the number of boosting steps. Here, we use only
one validation set in order to reduce the computational cost.

Additionally, one can apply Platt’s scaling method [15] to improve the esti-
mator of conditional probability. Estimated decision function f (m̂) is modified to
ĉ0f

(m̂) + ĉ1 so as to attain the minimum value of the cross entropy of ĉ0f
(m̂) + ĉ1

on Dval. Then, the estimator of conditional probability is given as qĉ0f(m̂)+ĉ1
.

Note that in Platt’s scaling method, one may use slightly modified output labels
to avoid overfitting. In numerical experiments of section 5, unmodified validation
set is used to estimate c0 and c1, because there is no promising criteria for the
modification of output labels.

3.2 Shrinkage Effect of Lφ

Under some conditions on φ, probability estimator given by Lφ is regarded as
shrinkage estimator that has been intensively studied in statistics.

First, we derive the correspondence between decision functions and condi-
tional probabilities under the loss function Lφ. The differential of φ is denoted as
φ′, φ′′, and so forth. When the population distribution is p(y|x), the conditional
expectation of the loss function for the conditional probability q(y|x) is given
as

∑
y∈Y φ(− log q(y|x))p(y|x). Applying Lagrange multiplier method, one finds

that the minimum solution with respect to q(y|x) subject to
∑

y∈Y q(y|x) = 1
satisfies

p(y|x) ∝ q(y|x)
φ′(− log q(y|x))

(3)

at each x ∈ X . The proportional relation is defined as the function of y. For
Logitboost derived from φ(z) = z, the above correspondence is reduced to



362 T. Kanamori

p(y|x) = q(y|x), and for Adaboost given by φ(z) = ez, the correspondence is
given as p(y|x) = q(y|x)2/

∑
y′∈Y q(y′|x)2.

We assume that there exists a decision function f ∈ F such that qf satisfies
(3) with q = qf . Note that the correspondence between f and qf is not nec-
essarily biunivoque. To recover the one-to-one correspondence, one can impose
a constraint on F such as

∑
y∈Y f(x, y) = 0 for any f ∈ F and x ∈ X . Here,

we focus on the relation between the population distribution p and the proba-
bility estimator q. Thus, it does not matter whether one-to-one correspondence
between f and qf holds or not, as long as there exists f such that qf enjoys (3).

We show a proposition on the relation between p and q in (3). The proposition
indicates that q is regarded as a shrinkage estimator of p. Remember that the
Kullback-Leibler divergence is defined as KL(p, q) =

∑
y∈Y py log(py/qy). for

probability distributions p, q on Y.

Proposition 1. Let u be the uniform distribution on Y, i.e. uy = 1/K for all
y ∈ Y. Let g be a function g : (0, 1) → (0, ∞), and suppose that there exists a
positive constant C such that

0 < z ≤ 1
K

=⇒ g(z) ≤ Cz,
1
K

≤ z < 1 =⇒ g(z) ≥ Cz. (4)

Assume that two probability distributions, p and q, on Y take positive probabilities
on all labels. When py ∝ g(qy) holds as the function of y, we have KL(u, p) ≥
KL(u, q).

Proof. Eq. (4) leads g(qy)
(
1− 1

Kqy

)
≥ C

(
qy− 1

K

)
for all y ∈ Y. Summing over y ∈

Y, one has inequality,
∑

y∈Y g(qy)
(
1 − 1

Kqy

)
≥ 0. Thus, the positivity of g(qy)

gives 0 < 1
K

∑
y′∈Y g(qy′ )

∑
y∈Y

g(qy)
qy

≤ 1. On the other hand, one has KL(u, p)−

KL(u, q) = −
∑

y∈Y
1
K log g(qy)

qy
∑

y′∈Y g(qy′ )
≥ − log 1

K
∑

y′∈Y g(qy′ )

∑
y∈Y

g(qy)
qy

, due
to convexity of the negative-log function. The claim follows these inequalities.

Remark 1. Let g be a convex, strictly increasing function on (0, 1) satisfying
g(+0) = 0. Then, Eq. (4) holds for C = Kg(1/K), and the ranking of probabil-
ity is preserved under the transformation of g. Thus, the decision boundary is
unchanged.

Corollary 1. The lower bound in the proof of proposition 1 is denoted as
β(g; q) = − log 1

K
∑

y′∈Y g(qy′ )

∑
y∈Y

g(qy)
qy

. Let g1 and g2 be functions satisfying

0 < z ≤ 1
K =⇒ 0 < g1(z) ≤ g2(z) ≤ Cz, 1

K ≤ z < 1 =⇒ g1(z) = g2(z) ≥ Cz.
Then, β(g1; q) ≥ β(g2; q) holds.

Applying the similar argument of proposition 1 with the inequality∑
y∈Y g1(qy) ≤

∑
y∈Y g2(qy), one can prove the corollary. Corollary 1 quali-

tatively explains the difference of shrinkage effect induced by g.
Proposition 1 provides a sufficient condition such that p is shrunk toward the

uniform distribution. Applying boosting algorithm based on the loss function
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Lφ, one can estimate the conditional probability qf . If the function z/φ′(− log z)
in Eq. (3) satisfies the condition in Proposition 1, then, the estimator of qf is
regarded as a shrinkage estimator of p. When the decision function f̂ is estimated,
the probability which is proportional to qf̂/φ′(− log qf̂ ) is an asymptotically
unbiased estimator of conditional probability under mild conditions. On the
other hand, we adopt qf̂ as an estimator of p.

In the statistical decision theory, shrinkage estimators such as Stein’s esti-
mator have been deeply investigated [11]. By using estimators shrunk toward
the uniform distribution, one will attain variance reduction, and will be able to
avoid overfitting to training samples. Thus, shrinkage estimator is regarded as a
variant of regularization that is commonly used in machine learning.

3.3 Regularization Introduced by Deformation of Log-Likelihood
Function

In the context of machine learning, regularization is commonly incorporated into
loss functions as additive form. But, generally additive form does not suit to
boosting algorithms. For the loss function with additive regularization term, the
differential does not have the form of Eq. (2) in general. Hence, we cannot directly
apply ECOC technique to search the weak hypothesis minimizing the differential.
Applying our loss function to boosting algorithm, the effect of regularization is
easily incorporated without any specific modification of weak learner.

There are some works on regularized boosting. Schapire et al. [6] have intro-
duced additive regularization term for Logitboost. This is an interesting example
in which additive regularization term works with boosting. Their algorithm needs
some modification of weak learner, since additional training samples are neces-
sary to realize the weighted loss function in Eq. (2). Rätsch et al. [7] proposed
regularized boosting in which the regularization term is built in loss functions as
multiplicative form. On the other hand, in our methods, regularization is incor-
porated as deformation of log-loss functions, and the deformation leads shrinkage
of estimator toward the uniform distribution.

Here, we study two kind of minimization problems to investigate the relation
between additive regularization and deformation of loss function.

First one is the minimization of negative log-likelihood function with an ad-
ditive regularization term such as

min
q

−
∑
y∈Y

py log qy + Λ(q), s.t. q ∈ Δ◦
K (5)

The additive term Λ(q) is introduced for regularization, and Δ◦
K denotes the

interior of the probability simplex in IRK . We assume that Λ is defined on an
open set including Δ◦

K . Applying the Lagrange multiplier methods to (5), we
find that the optimal solution q ∈ Δ◦

K satisfies

py = qy

(
∂Λ

∂qy
(q) + λ

)
, y ∈ Y, (6)
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where λ is the Lagrange multiplier given by λ = 1 −
∑

y∈Y qy
∂Λ
∂qy

(q).
The second problem is the minimization of Lφ under the probability distri-

bution p,

min
q

∑
y∈Y

pyφ(− log qy), s.t. q ∈ Δ◦
K (7)

As shown in Eq. (3), the optimal solution q ∈ Δ◦
K satisfies

py = μ
qy

φ′(− log qy)
, y ∈ Y, (8)

where μ is the Lagrange multiplier defined as μ = (
∑

y∈Y qy/φ′(− log qy))−1. Let
gφ(z) be z/φ′(− log z), then py ∝ gφ(qy) holds.

If the equality

qy

(
∂Λ

∂qy
(q) + λ

)
= μ

qy

φ′(− log qy)
, y ∈ Y (9)

is satisfied for any q ∈ Δ◦
K , the optimality conditions (6) and (8) holds simul-

taneously for common distribution p. This denotes that the optimal solution of
(5) is identical to that of (7). We show some examples of Λ and φ satisfying (9).

Example 2. Let φs(z) be (esz − 1)/s for s ≥ 0, where φ0(z) = z. In Adaboost
φ1(z) is used. We define Λs(q) as Λs(q) = log ‖q‖s+1, where ‖q‖s+1 denotes
(s + 1)-norm of q ∈ IRK . For q ∈ ΔK , Λ0(q) is equal to zero, and thus, the
regularization term Λ0 does not lead shrinkage effect to the estimator. For any
s ≥ 0, φ = φs and Λ = Λs satisfy (9). Since gφs(z) = z/φ′

s(− log z) = zs+1, the

relation between p and q is given as qy ∝ exp
{

1
1+s log py + (1 − 1

1+s ) log uy

}
.

Hence, the estimator q is given by shifting p toward the uniform distribution u
along the e-geodesic [12] on the set of multinomial distributions.

Example 3. Let φc(z) be − log(e−z− 1
K(1+1/c)), and Λc(q) be c KL(u, q) for c ≥ 0,

where u is the uniform distribution on Y. The regularization term has exactly
same effect as the Dirichlet prior with parameters taking a common value. Note
that the Dirichlet prior is the conjugate prior of the multinomial distribution.
We regard KL(u, q) as the function on {(q1, . . . , qK) | qy > 0, y ∈ Y}. We define
φ0(z) as z. For any c ≥ 0, φ = φc and Λ = Λc satisfy (9), and the proportional
relation, py ∝ gφ(qy), holds, where gφc(z) = z/φ′

c(− log z) = z − 1
K(1+1/c) .

Although the domain of gφc is (1/K(1 + 1/c), 1), proposition 1 is applicable
with some modification. We find that the minimizer of (7) is given as qy =

1
c+1 py + (1 − 1

c+1 )uy, and hence, q is given by shifting p toward the uniform
distribution u along the m-geodesic [12].

In general, the intensity of regularization is controlled by the regularization pa-
rameter such as c in example 3. In our methods, one can control the intensity
of regularization according to corollary 1. If there is simple correspondence be-
tween φ and Λ as shown in example 2 or 3, one can apply the loss function Lφ
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to boosting algorithm in order to impose the regularization effect same as Λ.
From example 2 and empirical studies in section 4 and 5, the order of gφ(ε) for
infinitesimal ε seems to be main factor to determine the intensity of regulariza-
tion.

We can apply the deformation of negative log-likelihood not only to regu-
larization but also to incorporation of the prior knowledge. Schapire et al. [6]
incorporated prior knowledge into boosting algorithm by adding a modified regu-
larization term to log-likelihood function. Here, we introduce a different approach
from [6]. Applying the deformation function φ depending on the class label, one
will obtain the estimator that is shifted to any specified class probability.

We show some examples in which the function φ depends on class labels. Let
r ∈ Δ◦

K be a probability distribution on Y. If we use the function φs(z, y) =
((ryez)s − 1)/s for the deformation of the negative log-likelihood, the minimizer
of the loss function

∑
y∈Y pyφs(− log q(y|x), y) with respect to q ∈ Δ◦

K satisfies

qy ∝ exp
{

1
1+s log py + (1 − 1

1+s) log ry

}
. Hence, the estimator q is regarded as

a shrinkage estimator toward the distribution r. The corresponding regulariza-
tion term is given as Λs(q) = 1

s+1 log
∑

y∈Y qs+1
y /rs

y. The second example is a
modification of example 3. Let φc(z, y) be − log(e−z − ry

1+1/c ). The minimizer of
the loss function

∑
y∈Y pyφc(− log q(y|x), y) satisfies qy = 1

1+cpy + (1 − 1
1+c )ry .

The corresponding regularization term is given as Λc(q) = c KL(r, q). The reg-
ularization term Λc(q) has same role as the Dirichlet prior with the parameter
proportional to r. When the functions such as φs or φc are applied to boosting
algorithm, the regularization parameter, s or c, may depend on class label y ∈ Y
and input variable x ∈ X in order to incorporate more detailed prior knowledge.

4 Overfitting in Boosting Process

As shown in section 2, one can transform the estimated decision function f to
the estimator of conditional probability qf . Thus, Adaboost or Logitboost has
potential to estimate conditional probabilities via decision functions. In practice,
however, probability estimation by Adaboost or Logitboost tends to overfit to
training samples, even though estimated decision boundary provides highly ac-
curate classification rule [13]. We intuitively explain the reason that estimated
probability overfits to training samples, and propose φ that tends to avoid over-
fitting.

In the boosting process, training error rapidly decreases to zero, and as the
result, most of �(yi|xi; f̂) take nearly zero, where f̂ is an estimated decision
function. To analyze the behavior of boosting algorithm, we introduce a naive
assumption such that all of negative-likelihoods on training samples, �(yi|xi; f̂),
take common infinitesimal value, ε. Note that this assumption is not totally
correct, because in some numerical experiments the mean value of �(yi|xi; f̂) on
training samples has almost same order of its deviation. However, the assumption
is very useful for rough understanding of boosting process. In the last part of
this section, we study the learning process without the naive assumption.
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In the line search of boosting algorithm, the coefficient α ∈ IR minimizing∑n
i=1 φ(�(yi|xi; f̂ +αh)) is sought, where h is a weak hypothesis. Let �i, ∂�i, and

∂2�i be �(yi|xi; f̂), ∂
∂α�(yi|xi; f̂ + αh)

∣∣
α=0

, and ∂2

∂α2 �(yi|xi; f̂ + αh)
∣∣
α=0

, respec-
tively. We approximate the loss function by quadratic function, and obtain an
approximate solution of line search as

α = −
∑n

i=1 φ′(�i)∂�i∑n
i=1 φ′′(�i)(∂�i)2 +

∑n
i=1 φ′(�i)∂2�i

. (10)

From the assumption of qf̂ (yi|xi) = e−ε = 1 − ε + o(ε), one has
∂�i =

∑
y∈Y qf̂ (y|xi)h(xi, y) − h(xi, yi) = O(ε), and in the same way, one also

has ∂2�i = O(ε) . Thus, derivatives are represented as ∂�i = aiε + o(ε), ∂2�i =
biε + o(ε) by some constants, ai and bi. As the result, the solution of the line
search is given as

α =
C0 + o(1)

C1 + φ′′(ε)ε/φ′(ε)
, (11)

where C0 and C1 are constants depending on a1, . . . , an and b1, . . . , bn.
The derivative value of φ in a vicinity of zero affects the order of α. For

Adaboost with φ(z) = ez, one has φ′′(ε)ε/φ′(ε) = ε, and α = C0/C1 +o(1). This
order is same as that of Logitboost with φ(z) = z. For the polynomial function
φ(z) = zγ , one has α = C0/(C1 + γ − 1) + o(1). Although the order is O(1) in
common with Adaboost and Logitboost, polynomial functions with high degree
will reduce α to some extent. If φ(z) is defined as e−1/z in a vicinity of zero, one
has α = C0ε + o(ε) that is of the order less than O(1).

Numerical experiments on several loss functions are illustrated in Figure 2.
The figure shows α(m) and the cross entropy on test set in boosting process.
Here, ξ(z) is the function defined as e−10/z for 0 < z ≤ 5 and az + b for 5 ≤ z,
where a and b are constants such that ξ(z) is differentiable at z = 5. Training
samples are generated from a logistic model with input space of dimension two,
and three output labels. Rpart [14] with max depth two, i.e. decision stumps,
is used as weak learner. In the process of Adaboost, α(m) takes almost constant
values. The same thing is said of boosting based on φ(z) = z4, but values are
smaller than those of Adaboost. For φ(z) = ξ(z), α(m) decreases as boosting
algorithm proceeds. These observations are consistent with the analysis given
above.

We have rough understanding about the behavior of boosting. Applying the
function φ such that limε↘0 φ′′(ε)ε/φ′(ε) takes large value or diverges to infin-
ity, one obtains a learning algorithm with short step size in line search. From
the viewpoint of estimation, short step size in the learning process is helpful to
determine appropriate boosting step, m, in boosting algorithm. In other words,
estimators given by Adaboost or Logitboost soon pass by the appropriate con-
ditional probability in the learning process. This tendency is illustrated in right
panel of Figure 2. The cross entropy on the test set is plotted to the number of
boosting step.
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Fig. 2. Left figure: Double logarithmic plot of α(m) in boosting process for φ(z) =
z, z4, ξ(z), respectively. Right figure: Double logarithmic plot of cross entropy on test
set (risk) in boosting process for each loss function.

Under more general assumption, we derive an upper bound of |α|. Here, we
do not assume that all �i, i = 1, . . . , n take common value. Let �1 be the
maximum value of �i, i.e. �1 = maxi �i. Note that all �i’s are non-negative,
and that ∂2�i takes positive value in general. We assume that φ is an increas-
ing and strictly convex function. Thus, φ′ and φ′′ takes positive value, and
φ′ is an increasing function. As the result, Eq. (10) provides the inequality,
|α| ≤ n maxi |∂�i| φ′(�1)

φ′′(�1)(∂�1)2+φ′(�1)∂2�1
= n maxi |∂�i|

φ′′(�1)
φ′(�1) (∂�1)2+∂2�1

. That is, the upper bound is gov-

erned by the order of φ′′/φ′ in a vicinity of zero. When the order of ∂�i and ∂2�i

is O(ε), one has a formula like (11) as an upper bound of |α|.

5 Numerical Results

We examine some loss functions on benchmark data. We use data sets in the
“mlbench” of the R library [16]. Multiclass data sets in mlbench are Glass,
LetterRecognition, Satellite, Vehicle, Vowel, DNA, Shuttle, and Soybean.
We use first five data sets. The input dimension of DNA is 180, and thus, some
dimension reduction techniques will be needed. In the data set of Shuttle, the
number of training samples in each label varies greatly, and Soybean includes
lots of missing data. These are main reason that we omit those data sets from
our numerical experiments. The data set named Synthetic is generated from
a logistic model. Each data set in mlbench is split up into training set, valida-
tion set and test samples. LetterRecognition and Satellite contain a large
amount of data, and we use a part of them. For each data set, we repeat numer-
ical experiments 20-50 times with different random splits of the data in order to
evaluate the generalization performance of each learning algorithm. The proper-
ties of each data sets are shown in Table 1, where “dim”, “class”, “tr.”, “val.”,
“test” and “rep.” denote the input dimension, the number of labels, the size of
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Table 1. Properties of each data set

data property

name dim class tr. val. test rep.

Glass 9 6 121 53 40 50

Letter 16 26 500 200 200 20

Satellite 36 6 700 200 100 20

Vehicle 18 4 487 209 150 50

Vowel 10 11 553 237 200 30

Synthetic 2 3 300 100 1000 50

training set, the size of validation set, the size of test set, and the number of
replication of learning, respectively.

Table 2 shows the results of comparison among loss functions. The func-
tion ξ(z) is defined in Section 4. For all φ(z) in experiments, the function
gφ(z) = z/φ′(− log z) satisfies the condition of Remark 1. In numerical experi-
ments, the decision tree algorithm called “Rpart” for binary problems [14] with
error correcting output coding [4] is applied as the weak learner. Besides boost-
ing algorithms, we examine support vector machines (svm) [9], and linear-logistic
regression (logit) [17]. As the kernel function for svm, radial basis function (rbf)
and linear function are used. To estimate conditional probability by svm, we
apply pairwise coupling technique with svm [18]. The svm with pairwise cou-
pling is implemented in the library of kernlab [19], and we use kernlab for the
numerical experiments. In kernlab library, the hyper-parameter of the rbf kernel,
i.e. bandwidth σ, is estimated by the mean value of 10% and 90% quantile of
‖xi − xj‖, i, j = 1, . . . , n, and the value of C in C-SVM is set to 1 as default.

The values of “err” in the table 2 denotes the test error (%) of estimated de-
cision functions. The cross entropy on the test set for the estimated conditional
probability without (with) Platt’s scaling is denoted by “risk” (“riskp”). Signif-
icant difference of test error or cross entropy is decided by the p-values of the
corrected resampled t-test [20] against Adaboost. Here, the statistic proposed in
[20] takes into account the correlation of resampling methods, and depresses the
type I error of the statistical test. Test error, risk, and riskp of each loss function
is compared with those of Adaboost.

When our purpose is to construct accurate classifier, there is no dominating
loss function. On some data sets, the test error of ξ(z) is larger than that of the
other loss functions .

On the other hand, on estimation of conditional probabilities, polynomial
functions and ξ(z) work better than the others. Especially, φ(z) = z6 performs
significantly better than φ(z) = ez in present numerical experiments. The Log-
itboost with φ(z) = z does not perform well, even though the loss function leads
log-likelihood estimator for parametric statistical models. In practical situations,
the dimension of F is extremely high and thus, estimators given by φ(z) = z will
soon overfit to training samples without appropriate regularization. We see that
Platt’s scaling method reduces the risk value. But, polynomial φ(z) and ξ(z)
still have advantage in comparison to Adaboost or Logitboost. Due to shrinkage
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Table 2. Comparison of loss functions, Lφ. We examine φ(z) = ez, z, z2, z4, z6, and
ξ(z). Test errors are shown in %. Significant difference is decided by the p-values of
0.01 under the corrected resampled paired t-test. Dots • (crosses ×) on the left of the
numbers denote that the performance of estimator given by the loss function is 1%
significantly better (worse) than that given by Adaboost.

φ(z) Glass Letter. Sate. Vehicle Vowel Synth.
ez err. 27.6 24.8 12.5 23.2 9.65 6.40

risk 1.10 1.65 0.58 0.65 0.81 0.29
riskp 0.98 1.46 0.52 0.64 0.52 0.23

z err. 26.9 24.9 11.3 22.7 9.90 6.56
risk 1.41 ×2.26 ×0.84 ×0.79 0.94 ×0.35
riskp 1.11 1.56 ×0.70 0.73 0.50 ×0.26

z2 err. 28.8 23.4 12.4 23.6 10.2 6.40
risk 1.16 1.70 0.61 0.67 0.68 0.24
riskp 1.01 1.28 0.53 0.63 0.45 0.22

z4 err. 29.5 22.5 11.9 24.4 9.45 6.52
risk 0.97 •1.34 0.49 •0.57 •0.48 •0.21
riskp 0.90 •1.12 0.45 •0.56 0.37 •0.20

z6 err. 27.8 22.6 11.6 24.5 9.17 6.42
risk 0.88 •1.17 •0.44 •0.56 •0.41 •0.20
riskp 0.85 •1.04 •0.42 •0.55 •0.34 •0.19

ξ(z) err. 30.3 ×31.3 13.6 25.9 ×16.4 6.61
risk 0.86 •1.26 •0.38 •0.55 •0.49 •0.19
riskp 0.86 1.23 •0.37 •0.54 0.49 •0.19

svm err. 32.6 ×30.7 14.4 25.3 ×16.0 •4.47
(rbf) risk ×1.91 ×2.67 ×0.76 ×1.16 ×2.26 •0.11

svm err. ×37.6 23.6 14.3 19.5 ×30.3 ×21.0
(linear) risk ×1.86 ×2.54 ×1.19 ×0.95 ×4.37 ×0.73

logit err. 37.2 ×32.5 ×19.7 19.8 ×42.1 ×21.0
risk 2.34 2.30 ×2.24 0.52 ×1.17 ×0.42

of probability distribution toward the uniform distribution, one will be able to
stabilize estimators.

As a whole, polynomial loss functions provide better estimate of conditional
probabilities than Adaboost or Logitboost, and the test error is competitive to
existing boosting algorithms. Especially, φ(z) = z6 provides accurate estimation
of conditional probabilities in the present experiments. The loss function ξ(z)
also provides good estimate of conditional probabilities, while the classification
error rate is larger than the other methods on some data sets. This is because
the number of boosting step M in the algorithm is not enough to achieve low
test error rate, when we apply ξ(z) as the loss function.

The table 3 and 4 show the number of boosting steps, m̂, that is estimated
by the validation set. Table 3 indicates the average number of m̂ with stan-
dard deviation for the estimation of decision boundary, and table 4 does that of
conditional probability. For the estimation of decision boundary, the error rate
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Table 3. The number of boosting steps for the estimate of decision boundary

φ(z) Glass Letter. Sate. Vehicle Vowel Synth.
ez ave. 125.9 1112.5 371.2 125.9 1093.8 42.4

s.d. 99.5 644.8 284.6 99.5 587.5 54.1

z ave. 115.8 1315.3 371.2 115.8 1046.8 32.3
s.d. 87.6 641.2 257.9 87.6 550.5 42.4

z2 ave. 121.2 430.0 237.7 121.2 375.7 32.7
s.d. 97.1 185.4 212.8 97.1 239.6 41.9

z4 ave. 128.4 597.2 298.7 128.4 330.2 31.1
s.d. 113.3 321.6 180.0 113.3 120.2 45.2

z6 ave. 124.0 744.3 280.0 124.0 534.7 31.5
s.d. 107.7 140.1 193.9 107.7 169.9 50.0

ξ(z) ave. 134.1 1654.9 522.3 134.1 1257.6 24.1
s.d. 106.2 293.0 305.9 106.2 278.1 40.8

Table 4. The number of boosting steps for the estimate of conditional probability

φ(z) Glass Letter. Sate. Vehicle Vowel Synth.
ez ave. 14.0 47.3 12.0 7.4 67.9 11.1

s.d. 5.7 11.2 5.1 2.7 33.2 16.6

z ave. 10.4 49.2 7.1 4.6 63.3 8.5
s.d. 7.8 24.5 4.4 3.1 29.0 7.6

z2 ave. 18.4 85.8 14.7 12.1 92.0 11.1
s.d. 23.6 20.5 6.4 6.4 33.7 4.8

z4 ave. 27.5 142.7 28.1 23.9 143.4 21.5
s.d. 14.2 45.3 7.2 6.4 49.3 9.6

z6 ave. 41.4 163.7 39.7 40.2 181.6 35.0
s.d. 19.3 44.9 11.2 12.6 53.4 15.6

ξ(z) ave. 180.5 1998.6 626.9 198.5 1935.4 258.4
s.d. 120.6 2.3 258.1 135.0 61.3 61.1

over the validation set Dval is applied to determine m̂, and for the estimation of
conditional probability, the cross entropy over Dval is used.

In table 3, boosting with ξ(z) needs more number of boosting steps than the
other estimators. Because, boosting with ξ(z) takes small step size α(m), and the
convergence speed is slow as illustrated in the figure 2. Adaboost (φ(z) = ez)
and Logitboost (φ(z) = z) also need relatively large number of boosting steps,
especially in LetterRecognition and Vowel. Some works have pointed out that
Adaboost is hard to overfit to training samples for the estimation of decision
boundary [21], and that large number of boosting steps does not considerably
degrade the prediction accuracy of output labels. We think that this is a rea-
son that Adaboost takes relatively large number of boosting steps in Table 3.
Logitboost indicates similar tendency with Adaboost.

In table 4, as a whole, the number of boosting steps is much smaller than that
for the estimation of decision boundary. As illustrated in section 4, Adaboost
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takes small number of m̂, while boosting with polynomial function or ξ(z) needs
larger m̂. The maximum number of boosting steps is limited to M = 2000, and
for ξ(z) the boosting step reaches almost maximum value on LetterRecognition
and Vowel. In Adaboost or Logitboost, α(m) takes larger value than the other
boosting algorithms examined in the numerical experiments. As the result, de-
tailed adjustment of the probability is not attained while the number of boosting
steps is small. In general, probability estimate is more difficult than prediction
of output labels. Thus, careful adjustment of estimator in learning process will
be necessity to achieve highly accurate estimation of probability distribution.

6 Conclusion

We proposed loss functions that provide shrinkage estimators of conditional
probabilities. In numerical experiments, proposed methods work better than
existing boosting algorithms for conditional probability estimation. An impor-
tant future work is to study the relation between estimation of classifiers and
that of conditional probabilities. Empirical choice of φ(z) is also an important
future work. The correspondence between the deformation of log-likelihood and
additive regularization term will provide an appropriate way of determining the
function φ.
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Abstract. We consider how state similarity in average reward Markov
decision processes (MDPs) may be described by pseudometrics. Intro-
ducing the notion of adequate pseudometrics which are well adapted to
the structure of the MDP, we show how these may be used for state
aggregation. Upper bounds on the loss that may be caused by working
on the aggregated instead of the original MDP are given and compared
to the bounds that have been achieved for discounted reward MDPs.

1 Introduction

Most work done in hierarchical reinforcement learning, relational reinforcement
learning, function approximation, factorization and state aggregation ultimately
addresses the problem of how to deal with large state spaces in Markov decision
processes (MDPs). Here we are concerned with state aggregation (for references
see [1]), which tries to convert the idea that similar states (with respect to
rewards and transition probabilities) may be aggregated to meta-states, and
calculation of the optimal policy may then be conducted on the meta-MDP.

For discounted reward MDPs, upper bounds on the loss that may be caused by
aggregation have been obtained by Even-Dar and Mansour [2] and more recently
by Ferns et al. [3]. We are particularly interested in the latter work, as it has in-
troduced the idea that state similarity may be described by pseudometrics. Here
we try to extend this approach, first by giving a general definition of adequate
metrics which are useful for state aggregation, and secondly by generalizing the
results of [3] and [2] to average reward MDPs.

The paper is organized as follows. After preliminary definitions in Sect. 2, we
show in Sect. 3 how to conduct state aggregation with respect to a given metric.
We consider a very simple distance function dv and give an upper bound on the
loss by state aggregation with respect to dv. Then in Sect. 4, we generally define
adequate distance functions and generalize the results accordingly. In Sect. 5, we
compare our bounds to those obtained in the discounted case and show why the
loss by aggregation may be significantly larger for average reward MDPs. In the
final section, we consider basic questions on the possibility of online aggregation
and other open problems for future research.
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2 Preliminaries

Definition 1. A Markov decision process (MDP) M = 〈S, A, μ0, p, r〉 consists
of (i) a finite set of states S with (ii) a finite set of actions A available in each
state ∈ S, (iii) an initial distribution μ0 over S, (iv) the transition probabilities
pa(s, s′) which give the probability of reaching state s′ when choosing action a
in state s, and (v) the payoff distributions with mean ra(s) and support in [0, 1]
that specify the random reward obtained for choosing action a in state s.

A policy on an MDP M is a mapping π : S → A. Note that each policy π
induces a Markov chain Mπ on M. We will only consider ergodic MDPs, where
all policies induce ergodic Markov chains (in which states are reachable from
each other after a finite number of steps). For a policy π let μπ be the stationary
distribution of Mπ. Remember that for ergodic Markov chains with probability
matrix P this is the unique distribution μ with μP = μ (cf. e.g. [4]). The average
reward of π then may be defined as

ρπ(M) :=
∑
s∈S

μπ(s) rπ(s)(s).

A policy π∗ is optimal on M, if ρπ(M) ≤ ρπ∗(M) =: ρ∗ for all policies π. As ρπ

is independent of the initial distribution μ0, in the following we ignore μ0 and
write MDPs as tuples M = 〈S, A, p, r〉.

Definition 2. Given a set X and a nonnegative function d : X × X → R, we
call (X, d) a pseudometric space with pseudometric d, if for all x, y, z ∈ X,

(i) d(x, x) = 0,

(ii) d(x, y) = d(y, x),
(iii) d(x, y) + d(y, z) ≥ d(x, z).

In general, for d being a metric on X it is additionally demanded that d(x, y) = 0
implies x = y. As we will consider pseudometrics on state spaces of MDPs, this
is obviously not a desired property (i.e., we want to include the possibility of
having distinct states with equal properties).

Definition 3. Given a Markov chain C with state space S and stationary dis-
tribution μ, its mixing time with respect to state s is defined as

κs :=
∑
s′∈S

mss′μ(s′),

where mss′ is the mean first passage time from s to s′ if s �= s′, while mss is the
mean return time to s. It can be shown that κs is independent of s (see [5]), so
that we may speak of the the mixing time of C, denoted by κC.
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3 A Simple Pseudometric for State Similarity

3.1 Block MDPs

Definition 4. An MDP M = 〈S, A, p, r〉 is a block MDP with blocks S1, . . . ,
Sk, if the block set {S1, . . . , Sk} is a partition of S, and for all a ∈ A, all s′′ ∈ S,
and all s, s′ in the same block Si,

ra(s) = ra(s′), and pa(s, s′′) = pa(s′, s′′).

A policy π on a block MDP is called uniform, if π(s) = π(s′) for s, s′ in the
same block.

Obviously, block MDPs are predestined to be aggregated. However, the following
definition is also applicable to arbitrary MDPs.

Definition 5. Given an MDP M = 〈S, A, p, r〉 and a partition Ŝ = {S1, . . . ,

Sk} of its state space S, the aggregated MDP with respect to Ŝ is defined as
M̂ := 〈Ŝ, A, p̂, r̂〉, where

r̂a(Si) :=
1

|Si|
∑
s∈Si

ra(s), and p̂a(Si, Sj) :=
1

|Si|
∑
s∈Si

∑
s′∈Sj

pa(s, s′).

It is easy to check that p̂a(Si, ·) is a probability distribution for each Si ∈ Ŝ.
Any policy π on an aggregated MDP M̂ with state space Ŝ = {S1, . . . , Sk}

can be naturally extended to a policy πe on the original MDP M by

πe(s) := a, if s ∈ Sj and π(Sj) = a.

We continue with some considerations on block MDPs, the first one being trivial
if the stationary distribution μ in state s is interpreted as probability of being in
s after an infinite number of steps. However, we give a proof which refers only
to the properties of stationary distributions mentioned in Sect. 2.

Lemma 1. Let M = 〈S, A, p, r〉 be a block MDP with block set Ŝ = {S1, . . . ,

Sk} and respective aggregated MDP M̂ = 〈Ŝ, A, p̂, r̂〉. Given a policy π on M̂
and its extended counterpart πe on M with stationary distributions μ̂π and μπe ,
respectively, for all Si ∈ Ŝ,

μ̂π(Si) =
∑
s∈Si

μπe(s).

Proof. First, note that since M is a block MDP, for all s ∈ Sj and a ∈ A,

p̂a(Sj , Si) =
∑

s′∈Si

pa(s, s′). (1)
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As μP = μ for the stationary distribution μ of a transition matrix P , we have1

for all s′ ∈ S, ∑
s∈S

μπe(s) p(s, s′) = μπe(s′). (2)

Let P̂ be the transition matrix of M̂ under π. We set μ′(Sj) :=
∑

s∈Sj
μπe(s)

for Sj ∈ Ŝ, and have by (2) and (1) for each Si ∈ Ŝ,

(μ′P̂ )Si =
∑

Sj∈Ŝ

μ′(Sj) p̂(Sj , Si) =
∑

Sj∈Ŝ

∑
s∈Sj

μπe(s) p̂(Sj , Si)

=
∑

Sj∈Ŝ

∑
s∈Sj

μπe(s)
∑

s′∈Si

p(s, s′) =
∑

s′∈Si

∑

Sj∈Ŝ

∑
s∈Sj

μπe(s) p(s, s′)

=
∑

s′∈Si

∑
s∈S

μπe(s) p(s, s′) =
∑

s′∈Si

μπe(s′) = μ′(Si).

Consequently, by the uniqueness of the stationary distribution we have μ̂π = μ′,
which proves the lemma. 	


Theorem 1. Each block MDP has an optimal policy which is uniform.

In the proof of Theorem 1 we will make use of a minor result about optimal
policies on ergodic MDPs.

Definition 6. Given policies π1, . . . , π� on an MDP with state space S, a policy
π is called a combination of π1, . . . , π�, if for each s ∈ S there is an i ∈ {1, . . . , �}
such that π(s) = πi(s).

The following proposition can be derived from the Bellman equations, which
may also be used to prove Theorem 1 directly (cf. the proof of the more general
Theorem 4 in Sect. 4 below). As a corollary to a more general result Proposition 1
has been proved in [6].

Proposition 1. On ergodic MDPs, any combination of optimal policies is
optimal.

Proof of Theorem 1. Consider an arbitrary non-uniform, optimal policy π∗ on a
block MDP M with blocks S1, . . . , Sk. Take some block Sj = {s1, . . . , sm} on
which π∗ is not uniform. As M is a block MDP, all states in Sj have the same
rewards and transition probabilities under each action a ∈ A. Hence, a policy π
is optimal, if it coincides with π∗ on S \Sj and swaps the actions in Sj according
to some permutation σ : Sj → Sj , that is, π(si) = π∗(σ(si)

)
for i = 1, . . . , m.

Thus in particular, for each i ∈ {1, . . . , m} there is an optimal policy π such
that π(si) = π∗(s1). It follows from Proposition 1 that there is an optimal policy
which is uniform on Sj . This argument can be repeated for each single block to
yield the theorem. 	

1 In the following, we usually skip indices for actions when the policy is fixed.
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3.2 A Simple Pseudometric, ε-Aggregation, and an Upper Bound

Given an MDP M = 〈S, A, p, r〉 and positive constants cr, cp, we set for s, s′ ∈ S,

dv(s, s′) := max
a∈A

{
cr

∣∣ra(s) − ra(s′)
∣∣ + cp

∑
s′′∈S

∣∣pa(s, s′′) − pa(s′, s′′)
∣∣}.

It is easy to check that dv is a pseudometric on S. However, dv is not a metric. If
dv(s, s′) = 0, then all rewards and transition probabilities coincide in states s and
s′, which however does not entail that s = s′. The pseudometric dv is basically
the bisimulation metric induced by the total variation probability metric, which
has been introduced for discounted MDPs in [3]. Ferns et al. consider also other
probability metrics that measure the distance between two transition probability
distributions pa(s, ·) and pa(s′, ·).

Definition 7. For fixed ε > 0, an ε-partition of the state space S with respect
to a pseudometric d on S is a minimal partition of S into aggregated states (or
blocks) S1, . . . , Sk such that for s, s′ ∈ Si one has d(s, s′) < ε. Minimality here
means that one cannot aggregate any Si, Sj to Si ∪Sj, that is, for distinct Si, Sj

there are s ∈ Si, s′ ∈ Sj with d(s, s′) ≥ ε.
When aggregating an MDP M with respect to an ε-partition we speak of an

ε-aggregation of M.

Theorem 2. Let M = 〈S, A, p, r〉 be an MDP and M̂ = 〈Ŝ, A, p̂, r̂〉 an ε-
aggregation of M with respect to dv. Then for each policy π on M̂ and its
respective extended policy πe on M,

∣∣ρπe(M) − ρπ(M̂)
∣∣ <

(
1
cr

+
κMπ − 1

cp

)
ε,

where κMπ is the mixing time of the Markov chain induced by π on M.

For the proof of Theorem 2 we will need the following result of [5] on perturba-
tions of Markov chains.

Theorem 3 (Hunter[5]). Let C, C̃ be two ergodic Markov chains on the same
state space S with transition probabilities p(·, ·), p̃(·, ·) and stationary distribu-
tions μ, μ̃. Then

∥∥μ − μ̃
∥∥

1
≤ (κC − 1)max

s∈S

∑
s′∈S

∣∣p(s, s′) − p̃(s, s′)
∣∣,

where κC is the mixing time of C.

Proof of Theorem 2. Let us first modify the original MDP M by redefining the
rewards in each state s ∈ Sj (1 ≤ j ≤ k := |Ŝ|) and each a ∈ A as

r̃a(s) :=
1

|Sj|
∑

s′∈Sj

ra(s′).
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Then using the assumption that two states s, s′ in the same block Sj have dis-
tance dv(s, s′) < ε, the difference in the average rewards of the original and the
thus modified MDP Mr̃ := 〈S, A, p, r̃〉 under some fixed policy π can be upper
bounded by

∣∣ρπ(M) − ρπ(Mr̃)
∣∣ =

=
∣∣∣∣
∑
s∈S

μπ(s) r(s) −
∑
s∈S

μπ(s) r̃(s)
∣∣∣∣ =

∣∣∣∣
k∑

j=1

∑
s∈Sj

μπ(s)
(
r(s) − 1

|Sj |
∑

s′∈Sj

r(s′)
)∣∣∣∣

=
∣∣∣∣

k∑
j=1

∑
s∈Sj

μπ(s)
(

1
|Sj |

∑
s′∈Sj

(
r(s) − r(s′)

))∣∣∣∣ <

k∑
j=1

∑
s∈Sj

μπ(s)
(

1
|Sj |

∑
s′∈Sj

ε

cr

)

=
∑
s∈S

μπ(s)
ε

cr
=

ε

cr
. (3)

Now we also redefine the transition probabilities for s ∈ Sj and a ∈ A to be

p̃a(s, s′) :=
1

|Sj |
∑

s′′∈Sj

pa(s′′, s′).

It is easily checked that the pa(s, ·) are indeed probability distributions for all
s ∈ S. Considering any policy π, for each s ∈ Sj,

∑
s′∈S

∣∣p(s, s′) − p̃(s, s′)
∣∣ =

∑
s′∈S

∣∣∣p(s, s′) − 1
|Sj |

∑
s′′∈Sj

p(s′′, s′)
∣∣∣

=
∑
s′∈S

∣∣∣ 1
|Sj |

∑
s′′∈Sj

(
p(s, s′) − p(s′′, s′)

)∣∣∣ ≤
∑
s′∈S

1
|Sj |

∑
s′′∈Sj

∣∣p(s, s′) − p(s′′, s′)
∣∣

=
1

|Sj |
∑

s′′∈Sj

∑
s′∈S

∣∣p(s, s′) − p(s′′, s′)
∣∣ <

1
|Sj |

∑
s′′∈Sj

ε

cp
=

ε

cp
, (4)

again using that states s, s′′ in the same block have distance dv(s, s′′) < ε. As
rewards are upper bounded by 1, Theorem 3 and (4) give for the difference of
the average rewards of Mr̃ and M̃ := 〈S, A, p̃, r̃〉 under policy π (with respective
stationary distributions μπ and μ̃π),

∣∣ρπ(Mr̃) − ρπ(M̃)
∣∣ =

∣∣∣∣
∑
s∈S

μπ(s) r̃(s) −
∑
s∈S

μ̃π(s) r̃(s)
∣∣∣∣ =

=
∣∣∣∣
∑
s∈S

(
μπ(s) − μ̃π(s)

)
r̃(s)

∣∣∣∣ ≤
∑
s∈S

∣∣μπ(s) − μ̃π(s)
∣∣ r̃(s)

≤
∑
s∈S

∣∣μπ(s) − μ̃π(s)
∣∣ =

∥∥μπ − μ̃π

∥∥
1

< (κMπ − 1)
ε

cp
.
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Combining this with (3) yields
∣∣ρπ(M) − ρπ(M̃)

∣∣ ≤
∣∣ρπ(M) − ρπ(Mr̃)

∣∣ +
∣∣ρπ(Mr̃) − ρπ(M̃)

∣∣
<

ε

cr
+ (κMπ − 1)

ε

cp
. (5)

So far, π has been an arbitrary policy on M. Now we fix π to be a policy on M̂
and claim that ρπe(M̃) = ρπ(M̂) for the extension πe of π. It is easy to see that
by definition of the rewards and transition probabilities, M̃ is a block MDP with
block set Ŝ and respective aggregated MDP M̂. In particular, r̂a(Sj) = r̃a(s)
for all a ∈ A and s ∈ Sj , so that by Lemma 1

ρπ(M̂) =
∑

Sj∈Ŝ

μ̂π(Sj) r̂(Sj) =
∑

Sj∈Ŝ

∑
s∈Sj

μ̃πe(s) r̃(s) =
∑
s∈S

μ̃πe(s) r̃(s) = ρπe(M̃),

which together with (5) proves the theorem. 	


Corollary 1. Let π∗ be an optimal policy on an MDP M with optimal average
reward ρ∗ := ρπ∗(M), and let π̂∗ be an optimal policy with optimal average
reward ρ̂∗ := ρπ̂∗(M̂) on an ε-aggregation M̂ of M with respect to dv. Then

(i) |ρ∗ − ρ̂∗| <

(
1
cr

+
κM − 1

cp

)
ε,

(ii) ρ∗ < ρπ̂∗e(M) +
(

2
cr

+
2(κM − 1)

cp

)
ε,

where κM := maxπ κMπ .

Proof. First note that the extension π̂∗e of π̂∗ to the block MDP M̃ (as defined
in the proof of Theorem 2) is optimal on M̃ with reward ρ̂∗. This follows from
Theorem 1 and the fact that ρπe(M̃) = ρπ(M̂) (cf. proof of Theorem 2). Now
if ρ∗ > ρ̂∗, then by optimality of π̂∗e on M̃,

ρπ∗(M) = ρ∗ > ρ̂∗ = ρπ̂∗e(M̃) ≥ ρπ∗(M̃),

so that by (5),

|ρ∗ − ρ̂∗| ≤
∣∣ρπ∗(M) − ρπ∗(M̃)

∣∣ <
ε

cr
+ (κπ∗ − 1)

ε

cp
. (6)

On the other hand, if ρ∗ ≤ ρ̂∗, then by optimality of π∗ on M,

ρπ̂∗e(M̃) = ρ̂∗ ≥ ρ∗ = ρπ∗(M) ≥ ρπ̂∗e(M),

and it follows again from (5) that

|ρ̂∗ − ρ∗| ≤
∣∣ρπ̂∗e(M̃) − ρπ̂∗e(M)

∣∣ <
ε

cr
+ (κπ̂∗e − 1)

ε

cp
,
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which together with (6) finishes the proof of (i).

Concerning (ii), note that by optimality of π̂∗e on M̃ it follows from (5) that

ρ∗ − ρπ̂∗e(M) ≤ ρ∗ − ρπ̂∗e(M) +
(
ρ̂∗ − ρπ∗(M̃)

)

= ρπ∗(M) − ρπ∗(M̃) + ρπ̂∗e(M̃) − ρπ̂∗e(M)

≤
∣∣ρπ∗(M) − ρπ∗(M̃)

∣∣ +
∣∣ρπ̂∗e(M̃) − ρπ̂∗e(M)

∣∣

< 2
(

ε

cr
+ (κM − 1)

ε

cp

)
. 	


Theorem 2 and Corollary 1 (i) can be seen as generalizations of the bounds for
discounted reward MDPs obtained in Theorem 5.2 of [3].

4 Adequate Similarity Metrics

Obviously, ε-aggregation with respect to dv is a rather restricted model which
will be applicable only to very special problems. In this section, we want to
develop a more general view on similarity metrics on an MDP’s state space.

4.1 Generalized Block MDPs

Definition 8. An MDP M = 〈S, A, p, r〉 is a generalized block MDP with
blocks S1, . . . , Sk, if the block set {S1, . . . , Sk} is a partition of S, and for all
s, s′ in the same block Si, all a ∈ A, and all blocks Sj there is an a′ ∈ A such
that

ra(s) = ra′(s′), and
∑

s′′∈Sj

pa(s, s′′) =
∑

s′′∈Sj

pa′(s′, s′′). (7)

With this definition, we could also consider MDPs in which each state has an
individual set of possible actions at its disposal. All results presented easily
generalize to this setting. However, for the sake of simplicity, we assume in
the following without loss of generality that within a block Si the actions in
A are labelled uniformly, such that for states s, s′ ∈ Si, (7) holds for a′ = a.
Consequently, we may define uniform policies as we have done before.

Generalized block MDPs (yet with discounted rewards) have already been
considered by Givan et al. [1] under the name of stochastic bisimulation, which
is the equivalence relation that corresponds to the partition {S1, . . . , Sk} in Def-
inition 8 (cf. also the discussion in [3]).

Note that block MDPs are also generalized block MDPs, so that most results
in this section can be considered as generalizations of the results in the previous
section.

Lemma 2. Let M = 〈S, A, p, r〉 be a generalized block MDP with block set Ŝ =
{S1, . . . , Sk} and respective aggregated MDP M̂ = 〈Ŝ, A, p̂, r̂〉. Given a policy π
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on M̂ and its extended counterpart πe on M with stationary distributions μ̂π

and μπe , respectively, one has for all Sj ∈ Ŝ,

μ̂π(Sj) =
∑
s∈Sj

μπe(s).

Proof. As proof of Lemma 1. 	


Theorem 4. On generalized block MDPs there is always a uniform policy which
gives optimal average return.

Proof. Let M = 〈S, A, p, r〉 be a generalized block MDP with block set Ŝ =
{S1, . . . , Sk}. It is a well-known fact (cf. e.g. [7]) that a policy on an ergodic
MDP is optimal if it solves the Bellman equations, that is, if there is ρ∗ and a
value function v : S → R such that for all s ∈ S,

v(s) + ρ∗ = max
a∈A

(
ra(s) +

∑
s′∈S

pa(s, s′) v(s′)
)
. (8)

Thus, an optimal policy π̂∗ on the aggregated MDP M̂ = 〈Ŝ, A, p̂, r̂〉 solves for
all Si ∈ Ŝ,

v̂(Si) + ρ̂∗ = max
a∈A

(
r̂a(Si) +

∑

Sj∈Ŝ

p̂a(Si, Sj) v̂(Sj)
)

= r̂π̂∗(Si)
(Si) +

∑

Sj∈Ŝ

p̂π̂∗(Si)
(Si, Sj) v̂(Sj). (9)

However, setting v(s) := v(Sj) for s ∈ Sj , it follows from (9) that the Bellman
equations (8) hold for the extension π̂∗e of π̂∗ to M for all s ∈ S, which means
that π̂∗e is optimal on M. 	


4.2 Adequate Similarity Metrics

The key idea an adequate similarity metric shall grasp is that in similar states
there should be equivalent actions available which lead to similar states again.
Such a metric may then be used to partition the state space. As similarity in
general is not a transitive relation, not any partition will work (for more about
the problem of obtaining adequate partitions from similarity relations see e.g.
[8]). Thus before formalizing our basic idea, we start with a condition for the
utility of a given partition induced by a distance metric.

Definition 9. Given ε > 0 and a pseudometric space (S, d), we say that S′ ⊆ S
is ε-maximal, if (i) for all s, s′ ∈ S′, d(s, s′) < ε, and (ii) for all s′′ ∈ S \ S′

there is s ∈ S′ with d(s, s′′) ≥ ε.
An ε-partition Ŝ = {S1, . . . , Sk} of S with respect to a metric d is called

consistent, if each Si ∈ Ŝ is ε-maximal.
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Unfortunately, existence of consistent ε-aggregations of the state space cannot
be guaranteed for each ε > 0.

Example 1. Let S = {s1, s2, s3} with d(s1, s2), d(s2, s3) < ε and d(s1, s3) ≥ ε.
Then neither of the two possible ε-partitions Ŝ1 =

{
{s1, s2}, {s3}

}
and Ŝ2 ={

{s1}, {s2, s3}
}

is consistent, because the singletons {s3} and {s1} are not ε-
maximal.

Sometimes, things are easier if (S, d) can be embedded into some larger metric
space (X, d), e.g. if S ⊂ R

n and d coincides on S with some arbitrary metric d
on R

n. In this case one may relax the condition for ε-maximality as follows:
A set S′ ⊆ S is ε-maximal, if S′ = S ∩ Uε(x) for some ε-ball Uε(x) := {y ∈

X : d(x, y) < ε} with center x ∈ X . Then an ε-partition Ŝ = {S1, . . . , Sk} is
consistent if it can be represented by non-intersecting ε-balls, that is, if

(i) there are x1, . . . , xk ∈ R
n such that Si = S ∩ Uε(xi) for i = 1, . . . , k,

(ii) Uε(xi) ∩ Uε(xj) = ∅ for i �= j.

However, such an embedding may fail to give consistency either.

Example 2. Let S = {s1, s2, s3} consist of three points s1, s2, s3 equidistantly
distributed on a circle C := {y ∈ R

2 : ‖x − y‖2 = r} with center x and radius
r. Considering the metric space (C, d) with d(y, z) := ‖y − z‖2 for y, z ∈ C, it is
easy to see that for ε =

√
2r (so that for y ∈ C, Uε(y) contains one half of C),

there is no consistent ε-partition of S. This example can easily be extended to
arbitrary n-dimensional spheres.

Also, R
n with Euclidean distance may not be favorable anyway, as it is impossible

to cover R
n with non-intersecting ε-balls with respect to Euclidean distance.

Thus, the metric with respect to ‖ · ‖∞, which evidently guarantees a consistent
ε-partition in R

n for each ε > 0, will be preferred.

Definition 10. Given an MDP M = 〈S, A, p, r〉, we say that a pseudometric
d on S is adequate to M, if d(s, s′) < ε implies that for all a ∈ A there is an
a′ ∈ A such that

(i) cr

∣∣ra(s) − ra′(s′)
∣∣ < ε,

(ii) cp

∣∣∣
∑

s′′∈S′

pa(s, s′′) −
∑

s′′∈S′

pa′(s′, s′′)
∣∣∣ < ε for all ε-maximal S′ ⊆ S.

As in the case of generalized block MDPs we assume without loss of generality
that for states s, s′ in the same block, actions are labelled uniformly so that
a′ = a in the definition above.

Of course, one may as well define a particular partition Ŝ = {S1, . . . , Sk} of
the state space to be ε-adequate, if for all s, s′ in the same block Sj ,

(i) cr

∣∣ra(s) − ra(s′)
∣∣ < ε,

(ii’) cp

∣∣∣
∑

s′′∈Si

pa(s, s′′) −
∑

s′′∈Si

pa(s′, s′′)
∣∣∣ < ε for all Si ∈ Ŝ.
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This modified definition is similar to the definition of ε-homogeneous parti-
tions for discounted reward MDPs in [2]. The only difference is that in condition
(ii’), Even-Dar and Mansour consider arbitrary norms and sum up over all ag-
gregated states.

Further, one still may work with the metric dv defined in the previous section.
Even though the kind of state similarity which may be grasped by dv is rather
restricted, aggregating states with respect to dv for given ε > 0 evidently gives
ε-adequate partitions of the state space. By definition, dv is also an adequate
metric.

4.3 A General Upper Bound on the Loss by Aggregation

By the remarks at the end of the previous section, the following theorem can be
seen as a generalization of Lemma 3 of [2] to average reward MDPs.

Theorem 5. Given an MDP M = 〈S, A, p, r〉 and a consistent ε-aggregation
M̂ = 〈Ŝ, A, p̂, r̂〉 of M with respect to an adequate pseudometric d, for each
policy π on M̂ and its respective extended policy πe on M,

∣∣ρπe(M) − ρπ(M̂)
∣∣ <

(
1
cr

+
(κMπ − 1)|Ŝ|

cp

)
ε.

Proof. As in the proof of Theorem 2, we start by modifying the rewards in M
slightly to be

r̃a(s) :=
1

|Sj |
∑

s′∈Sj

ra(s′) (10)

for s ∈ Sj and a ∈ A. Then the same argument can be repeated to see that for
the modified MDP Mr̃ = 〈S, A, p, r̃〉,

∣∣ρπ(M) − ρπ(Mr̃)
∣∣ <

ε

cr
(11)

for each policy π. In the next step we want to modify the transition probabilities
in Mr̃ so that for s, s′ in the same block and for all blocks Si ∈ Ŝ,

∑
s′′∈Si

p̃a(s, s′′) =
∑

s′′∈Si

p̃a(s′, s′′). (12)

In order to attain this, we set for all s ∈ Sj , s′ ∈ Si, and all a ∈ A,

p̃a(s, s′) := pa(s, s′) +
1

|Si|

(
1

|Sj |
∑
s̄∈Sj

∑
s′′∈Si

pa(s̄, s′′) −
∑

s′′∈Si

pa(s, s′′)
)

(note that the p̃a(s, ·) are indeed probability distributions for all s ∈ S), so that
for s in any block Sj ,

∑
s′∈Si

p̃a(s, s′) =
∑

s′∈Si

pa(s, s′) +
1

|Sj |
∑
s̄∈Sj

∑
s′′∈Si

pa(s̄, s′′) −
∑

s′′∈Si

pa(s, s′′)

=
1

|Sj |
∑
s̄∈Sj

∑
s′′∈Si

pa(s̄, s′′), (13)
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independently of s, which entails (12). As Ŝ is assumed to be a consistent ε-
aggregation with respect to an adequate metric, we have by definition of p̃ for
transition probabilities p(·, ·), p̃(·, ·) under any policy π and for s ∈ Sj , s′ ∈ Si,

|p̃(s, s′) − p(s, s′)| =
1

|Si|
·
∣∣∣∣

1
|Sj |

∑
s̄∈Sj

∑
s′′∈Si

p(s̄, s′′) −
∑

s′′∈Si

p(s, s′′)
∣∣∣∣

≤ 1
|Si|

· 1
|Sj |

∑
s̄∈Sj

∑
s′′∈Si

∣∣∣p(s̄, s′′) − p(s, s′′)
∣∣∣ <

ε

cp|Si|
,

so that for all s ∈ S,

∑
s′∈S

∣∣p̃(s, s′) − p(s, s′)
∣∣ =

k∑
i=1

∑
s′∈Si

∣∣p̃(s, s′) − p(s, s′)
∣∣ <

k∑
i=1

ε

cp
=

|Ŝ|
cp

ε.

Thus, by Theorem 3 we have for the difference of the average rewards of Mr̃ and
M̃ := 〈S, A, p̃, r̃〉 under some policy π (with respective stationary distributions
μπ and μ̃π),

∣∣ρπ(Mr̃) − ρπ(M̃)
∣∣ =

∣∣∣
∑
s∈S

(
μπ(s) − μ̃π(s)

)
r̃(s)

∣∣∣ ≤
∑
s∈S

∣∣μπ(s) − μ̃π(s)
∣∣ r̃(s)

≤
∑
s∈S

∣∣μπ(s) − μ̃π(s)
∣∣ =

∥∥μπ − μ̃π

∥∥
1

< (κMπ − 1)
|Ŝ|
cp

ε. (14)

Now M̃ is a generalized block MDP with block set Ŝ, and by (10) and (13), its
respective aggregated MDP is precisely M̂. Analogously to the proof of Theo-
rem 2, it follows from Lemma 2 that ρπ(M̂) = ρπe(M̃) for all policies π on M̂.
Thus (11) and (14) yield
∣∣ρπe(M) − ρπ(M̂)

∣∣ =
∣∣ρπe(M) − ρπe(M̃)

∣∣

≤
∣∣ρπe(M) − ρπe(Mr̃)

∣∣ +
∣∣ρπe(Mr̃) − ρπe(M̃)

∣∣ <
ε

cr
+ (κMπ − 1)

|Ŝ|
cp

ε. 	


Corollary 2. Let π∗ be an optimal policy on an MDP M with optimal average
reward ρ∗, and let π̂∗ be an optimal policy with optimal average reward ρ̂∗ on a
consistent ε-aggregation M̂ of M with respect to an adequate metric. Then for
κM := maxπ κMπ ,

(i) |ρ∗ − ρ̂∗| ≤
(

1
cr

+
(κM − 1)|Ŝ|

cp

)
ε,

(ii) ρ∗ ≤ ρπ̂∗e(M) +
(

2
cr

+
2(κM − 1)|Ŝ|

cp

)
ε.

Proof. Analogously to the proof of Corollary 1. 	


Corollary 2 can be seen as a generalization of Lemma 4 of [2] to average reward
MDPs.
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5 Dependence on the Mixing Time

5.1 Why Bounds Are Worse in the Average Reward Case

The bounds obtained for ε-aggregation in the discounted case [3,2] are basically
of the form ε

1−γ , i.e., in average one loses only ε reward in each step. This may
give the impression that the mixing time parameter in the obtained bounds for
average reward MDPs is redundant and should be eliminated, or at least replaced
with something substantially smaller. However, it turns out that aggregation may
go terribly wrong if mixing times are large.

Theorem 6. For each ε > 0 and each δ ∈ (0, ε) there is an MDP M and an
ε-aggregation M̂ of M with respect to dv, such that for some policy π on M̂,

|ρπe(M) − ρπ(M̂)| ≥ 1 − δ.

Proof. Fix some ε > 0 and consider for δ ∈ (0, ε) the Markov chain C with
S = {s1, s2, s3} and the following nonzero transition probabilities pij := p(si, sj),

p12 = 1 − δ, p13 = δ, p21 = p31 = δ/n, p22 = p33 = 1 − δ/n,

where n ∈ N. Then we may ε-aggregate states s1 and s2 with respect to dv and
obtain a Markov chain Ĉ with states S1 = {s1, s2}, S2 = {s3} and transition
probabilities

p̂(S1, S2) = δ/2, p̂(S2, S1) = δ/n, p̂(S1, S1) = 1 − δ/2, p̂(S2, S2) = 1− δ/n.

The original chain C has stationary distribution μ =
(

δ
n+δ , n−δn

n+δ , δn
n+δ

)
, while

the stationary distribution of Ĉ is μ̂ =
(

2
n+2 , n

n+2

)
. Thus, for n → ∞ one has

μ̂ → (0, 1), while μ → (0, 1 − δ, δ). Thus any MDP whose induced Markov chain
under some policy π is C satisfies the claim of the theorem, provided that π gives
reward 1 in s3 and reward 0 in s1, s2 (which is in accordance with ε-aggregation
in respect to dv). 	


Thus the results for discounted MDPs are not transferable to the average reward
case. Indeed, as shown in [9], the average reward ρπ may be expressed via the
discounted rewards ργ

π(s) as ρπ = (1 − γ)
∑

s μπ(s) ργ
π(s). This means that the

stationary distribution μπ under π plays an important role. The loss by aggre-
gation remains small (just as in the discounted case) as long as μ̂ approximates
μ well, that is, μ̂(Si) ≈

∑
s∈Si

μ(s). The quality of approximation however can
be estimated using the mixing time as Theorem 3 shows. Note that the mixing
time in the example of Theorem 6 becomes arbitrarily large.

5.2 Alternative Perturbation Bounds

The perturbation bound for stationary distributions of Markov chains of Theo-
rem 3, which we used in the proofs of Theorems 2 and 5, may be replaced with
an arbitrary alternative perturbation bound of the form

‖μ − μ̃‖q ≤ λ ‖P − P̃‖∞.
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There are several such bounds in the literature (for an overview see [10]). These
differ from each other in at most two aspects, namely (i) the used norm q (which
is either 1 or ∞) and (ii) the conditioning number λ. Obviously, bounds which
hold for the ∞-norm instead of the 1-norm are impractical, as they would amount
to an additional factor |S| in the bounds of Theorems 2 and 5. Among the 1-norm
bounds the conditioning number in terms of the mixing time used by Hunter has
the advantage of being rather intuitive. However, there is little general knowledge
about the size of the mixing time (cf. [5] for results in some special cases and
also some comparison to other 1-norm conditioning numbers, which complements
the overview given in [10]). Moreover, Seneta’s ergodicity coefficient [11], which
among the 1-norm conditioning numbers considered in [10] is the smallest, is
in general also not larger than Hunter’s mixing time parameter (see [12]), so
that one may want to replace Theorem 3 with Seneta’s perturbation bound [11].
Of course, this basically gives the same aggregation bounds, only that Hunter’s
mixing time parameter is replaced with Seneta’s ergodicity coefficient.

6 Online Aggregation and Other Open Problems

Online Aggregation. Consider an agent who starts in an MDP unknown to
her and tries to aggregate states while still collecting information about the
MDP. Obviously, if she is given access to an adequate distance function, the
aggregation may be done online. For given ε > 0 the most straightforward way
to do this is to assign each newly visited state s to an existing block Si if possible
(i.e., if all states s′ in Si have distance < ε to s), or otherwise create a new block
Sj � s. This is an obvious sequential clustering algorithm (called e.g. BSAS in
[13]). Also, Ferns et al. [3] suggest a similar approach for offline aggregation.

Unfortunately, even if the existence of a consistent ε-partition is guaranteed
(which, as we have seen, need not be the case), in general this online aggregation
algorithm will give inconsistent ε-partitions. It is an interesting question whether
there are more prospective algorithms for online aggregation.

More generally, a related open question is whether any online regret bounds
are achievable for a combination of a suitable online aggregation algorithm with
an online reinforcement learning algorithm (such as e.g. UCRL [14]). As it is of
course hard to choose an appropriate ε in advance without having any informa-
tion about the MDP at hand, one would need a mechanism which adapts the
aggregation parameter ε to the MDP.

It may be relevant that generally, optimal aggregation is hard even if the MDP
is known (cf. [2]). Although Even-Dar and Mansour consider discounted MDPs,
their results hold generally, as the question is to find for given ε > 0 a minimal
ε-adequate aggregation (see the modification of Definition 10).

Similarity of Actions. We have concentrated on MDPs with large state spaces.
It is an interesting question whether an analogous approach will work for a
similarity metric on actions, and in particular how the two approaches may be
combined.
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Relaxing Similarity. In many real-world problems one would want to relax
the given similarity conditions. In particular, the idea that similar states shall
lead to similar states under equivalent actions may not mean that states s, s′

with d(s, s′) < ε will lead to states whose distance is < ε as well. Rather one
may e.g. demand that for some constant c > 1 the distance will be < cε. Of
course, under this generalized assumption no aggregation in the sense of a strict
partition of the state space is possible anymore. Thus in order to deal with this
setting, new methods will have to be developed.
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Abstract. Recently, it was shown that calibration with an error less
than δ > 0 is almost surely guaranteed with a randomized forecasting
algorithm, where forecasts are chosen using randomized rounding up to
δ of deterministic forecasts. We show that this error can not be improved
for a large majority of sequences generated by a probabilistic algorithm:
we prove that combining outcomes of coin-tossing and a transducer algo-
rithm, it is possible to effectively generate with probability close to one
a sequence “resistant” to any randomized rounding forecasting with an
error much smaller than δ.

1 Introduction

A minimal requirement for testing of any prediction algorithm is that it should
be calibrated (see Dawid [1]). An informal explanation of calibration would go
something like this. Let a binary sequence ω1, ω2, . . . , ωn−1 of outcomes is ob-
served by a forecaster whose task is to give a probability pn of a future event
ωn = 1. A typical example is that pn is interpreted as a probability that it will
rain. Forecaster is said to be well-calibrated if it rains as often as he leads us to
expect. It should rain about 80% of the days for which pn = 0.8, and so on. So,
for simplicity we consider binary sequences, i.e. ωn ∈ {0, 1} for all n. We give a
rigorous definition of calibration later.

We suppose that the forecasts pn are computed by some algorithm. If the
weather acts adversarially, then Oakes [6] and Dawid [2] show that a determinis-
tic forecasting algorithm will not be always be calibrated. V’yugin [9] proved that
this result holds for a large majority of sequences generated by a probabilistic
algorithm.

Foster and Vohra [4] show that calibration is almost surely guaranteed with
a randomizing forecasting rule, i.e., where the forecasts are chosen using pri-
vate randomization and the forecasts are hidden from the weather until weather
makes its decision to rain or not. Kakade and Foster [5] obtained an analogous
positive result for deterministic forecasting systems and for the case where the
class of “selection rules” is restricted to “continuous selection rules”. This ap-
proach was further developed in Vovk et al. [8].

In Section 2 we give the definition of calibration and randomized rounding.
Main result of this paper - Theorem 1, is presented in Section 3, the proof of the

M. Hutter, R.A. Servedio, and E. Takimoto (Eds.): ALT 2007, LNAI 4754, pp. 388–402, 2007.
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main result is given in Section 4. This theorem shows that combining outcomes
of coin-tossing and a transducer algorithm, it is possible to effectively generate
with probability close to one a sequence “resistant” to randomized rounding
forecasting with error much smaller than the precision of rounding. Theorems 2
and 3 show that the calibration error may be much bigger if we check calibration
using “deterministic selection rules”.

2 Background

Let Ω be the set of all infinite binary sequences, Ξ be the set of all finite binary
sequences, and λ be the empty sequence. For any finite or an infinite sequence
ω = ω1 . . . ωn . . . we write ωn = ω1 . . . ωn (we put ω0 = ω0 = λ). Also, l(ωn) = n
denotes the length of the sequence ωn. If x is a finite sequence and ω is a finite
or infinite sequence then xω denotes the concatenation of these sequences, x � ω
means that x = ωn for some n.

A deterministic forecasting system f is a real-valued function f : Ξ → [0, 1].
We consider computable forecasting systems; there is an algorithm, which given
a finite sequence ω1 . . . ωn−1 ∈ Ξ and an arbitrary positive rational number κ,
when halts, outputs a rational approximation of f(ω1 . . . ωn−1) up to κ. A fore-
casting system f is called total if it is defined on each finite sequence ω1 . . . ωn−1.
Any total forecasting system defines the corresponding overall probability dis-
tribution P on the set of all sequences such that its conditional probabilities
satisfy

pn = P (ωn = 1|ω1, ω2, . . . , ωn−1),

where pn = f(ω1 . . . ωn−1). In the following we consider only total forecasting
systems.

The evaluation of probability forecasts is based on a method called calibration
(see Dawid [1], [2]). Let f be some forecasting system and I(p) be a characteristic
function of some subinterval I ⊆ [0, 1], i.e., I(p) = 1 if p ∈ I, and I(p) = 0,
otherwise. Let ω = ω1ω2 . . . be an infinite binary sequence.

A forecasting system f is well-calibrated for an infinite sequence ω1ω2 . . . if for
the characteristic function I(p) of any subinterval of [0, 1] the calibration error
tends to zero, i.e.,

∑n
i=1 I(pi)(ωi − pi)∑n

i=1 I(pi)
−→ 0 (1)

as the denominator of the relation (1) tends to infinity; we denote pi = f(ωi−1).
Here, I(pi) determines some “selection rule” which define moments of time where
we compute the deviation between forecasts pi and outcomes ωi.

Oakes [6] proposed arguments (see Dawid [3] for different proof) that no
deterministic forecasting system can be well-calibrated for all possible sequences:
any total forecasting system f is not calibrated for the sequence ω = ω1ω2 . . .,
where
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ωi =
{

1 if pi < 0.5
0 otherwise

and pi = f(ω1 . . . ωi−1), i = 1, 2, . . ..
A randomized forecasting system f(ωn−1) is a random variable with range in

[0, 1] defined on some probability space supplied with a probability distribution
Prn, where ωn−1 ∈ Ξ is a parameter of this variable. For any n, the predictor
chooses the forecast pn of the event ωn = 1 randomly using probability distribu-
tion Prn of the variable f(ωn−1). In this case, for any given ω we can consider the
probability Pr of the event (1), where Pr is the overall probability distribution
generated by probability distributions Prn, n = 1, 2, . . ..

In the following we suppose that for any ωn−1 the range of the random variable
f(ωn−1) is finite, say, {pn,1, . . . , pn,mn}. The number

δn = inf{|pn,i − pn,j | : i �= j}

is called the level of discreteness of f on ωn−1. We also consider δ = infn δn -
the level of discretness of f on ω.

A typical example is the uniform rounding: for any n the rational points pn,i

divide the unit interval into equal parts of size 0 < δ < 1; then the level of
discreteness is constant and equals δ.

Kakade and Foster [5] presented “an almost deterministic” randomized round-
ing total forecasting algorithm f : an observer can only randomly round with the
precision of rounding (level of discreteness) δ the deterministic forecast in order
to calibrate. Then for any infinite sequence ω = ω1ω2 . . . the overall probability
Pr of the event ∣∣∣∣∣

1
n

n∑
i=1

I(pi)(ωi − pi)

∣∣∣∣∣ ≤ δ

tends to one as n → ∞, where pi is the random variable f(ωn−1), I(p) is the
characteristic function of any subinterval of [0, 1].1 This algorithm randomly
rounds a forecast computed by some deterministic algorithm (constructed in [5]):
for example, the forecast 0.8512 can be rounded up to second digit to 0.86 with
probability 0.12, and to 0.85 with probability 0.88, at the next moment of time,
the forecast 0.2588 can be rounded up to second digit to 0.26 with probability
0.88, and to 0.25 with probability 0.12. Here we have in mind some algorithm
defining the direction of rounding.

1 In fact, more accurate calculations show that this inequality can be replaced on

∣∣∣∣∣
1

α(n)
√

n

n∑
i=1

I(pi)(ωi − pi)

∣∣∣∣∣ ≤ δ,

where α(n) is any unbounded nondecreasing function; then (1) holds for Kakade and
Foster’s algorithm if lim

n→∞
1√
n

∑n
i=1 I(pi) = ∞. We do not go into details, since in

this paper we prove results in the opposite direction (see [5], [8]).
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3 Main Results

We need some computability concepts. Let R be the set of all real numbers
extended by adding the infinities −∞ and +∞, A is some set of finite objects;
the elements of A can be effectively enumerated by positive integer numbers (see
Rogers [7]). In particular, we will identify a computer program and its number.
We fix some effective one-to-one enumeration of all pairs (triples, and so on) of
nonnegative integer numbers. We identify any pair (t, s) and its number 〈t, s〉.

A function φ: A → R is called (lower) semicomputable if {(r, x) : r < φ(x)}
(r is a rational number) is a recursively enumerable set. This means that there
is an algorithm which when fed with a rational number r and a finite object
x eventually stops if r < φ(x) and never stops, otherwise. In other words, the
semicomputability of f means that if φ(x) > r this fact will sooner or later be
learned, whereas if f(x) ≤ r we may be for ever uncertain. A function φ is upper
semicomputable if −φ is lower semicomputable.

Standard argument based on the recursion theory shows that there exist the
lower and upper semicomputable real functions φ−(j, x) and φ+(k, x) universal
for all lower semicomputable and upper semicomputable functions from x ∈ Ξ.2

As follows from the definition, for every computable real function φ(x) there
exist a pair 〈j, k〉 such that

φ(x) = φ−(j, x) = φ+(k, x)

for all x. Let φ−
s (j, x) be equal to the maximal rational number r such that the

triple (r, j, x) is enumerated in s steps in the process of enumerating of the set

{(r, j, x) : r < φ(j, x), r is rational}

and equals −∞, otherwise. Any such function φ−
s (j, x) takes only finite number

of rational values distinct from −∞. By definition, φ−
s (j, x) ≤ φ−

s+1(j, x) for all
j, s, x, and

φ−(j, x) = lim
s→∞φ−

s (j, x).

An analogous non-increasing sequence of functions φ+
s (k, x) exists for any upper

semicomputable function.
Let i = 〈t, k〉. We say that the function φi(x) is defined on x if given any

degree of precision - positive rational number κ > 0, it holds

|φ+
s (t, x) − φ−

s (k, x)| ≤ κ

for some s; φi(x) undefined, otherwise. If any such s exists then for minimal such
s, φi,κ(x) = φ−

s (k, x) is called the rational approximation (from below) of φi(x)
up to κ; φi,κ(x) undefined, otherwise.

Any measure P on Ω can be defined as follows. Let us consider intervals

Γz = {ω ∈ Ω : z � ω},

2 This means that each lower semicomputable function φ(x) can be represented as
φ(x) = φ−(j, x) for some j. The same holds for upper semicomputability.
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where z ∈ Ξ. We denote P (z) = P (Γz) for z ∈ Ξ and extend this function on
all Borel subsets of Ω in a standard way.

A measure P is computable if there exists an algorithm which given z ∈ Ξ
and a degree of precision κ computes the number P (z) up to κ.

We use also a concept of computable operation on Ξ
⋃

Ω [10,11]. Let F̂ be
a recursively enumerable set of ordered pairs of finite sequences satisfying the
following properties:

– (i) (x, λ) ∈ F̂ for each x;
– (ii) if (x, y) ∈ F̂ , (x′, y′) ∈ F̂ and x � x′ then y � y′ or y′ � y for all finite

binary sequences x, x′, y, y′.

A computable operation F is defined as follows

F (ω) = sup{y | x � ω and (x, y) ∈ F̂ for some x},

where ω ∈ Ω
⋃

Ξ and sup is in the sense of the partial order � on Ξ.
Informally, the computable operation F is defined by some algorithm; this

algorithm when fed with an infinite or a finite sequence ω takes it sequentially
bit by bit, processes it, and produces an output sequence also sequentially bit
by bit.

A probabilistic algorithm is a pair (P, F ), where P is a computable measure
on the set of all binary sequences and F is a computable operation. For any
probabilistic algorithm (P, F ) and a set A ⊆ Ω, we consider the probability

P{ω : F (ω) ∈ A}

of generating by means of F a sequence from A given a sequence ω distributed
according to the computable probability distribution P . In the following P = L,
where L(x) = L(Γx) = 2−l(x) is the uniform measure on Ω.

A natural definition of computable randomized forecasting system f would be
the following: a random variable f is computable if its probability distribution
function

φ(α; ωn−1) = Prn{f(ωn−1) < α}

is “a computable real function” from arguments α ∈ [0, 1] and ωn−1 ∈ Ξ. The
precise definition requires some technicalities. In fact, in the construction below,
we compute φ only at one point α = 0.5; so, we will use the following definition.
A randomized forecasting system f is weakly computable if its weak probability
distribution function

ϕn(ωn−1) = Prn{f(ωn−1) < 0.5}

is a computable function from ωn−1.
Let I0 = I0(p) be the characteristic function of the interval (0, 1

2 ) and I1 =
I1(p) be the characteristic function of the interval [12 , 1). The following theorem
is the main result of this paper.
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Theorem 1. For any ε > 0 a probabilistic algorithm (L, F ) can be constructed,
which with probability ≥ 1 − ε outputs an infinite binary sequence ω = ω1ω2 . . .
such that for every weakly computable randomized forecasting system f with level
of discretness δ on ω, for some ν = 0 or ν = 1, the overall probability of the
event

lim sup
n→∞

∣∣∣∣∣
1
n

n∑
i=1

Iν(pi)(ωi − pi)

∣∣∣∣∣ ≥ 0.25δ (2)

equals one, where the overall probability is associated with f and pi = f(ωi−1),
i = 1, 2, . . ., is a random variable.

The following deterministic analogue of Theorem 1 was obtained in V’yugin [9].

Theorem 2. For any ε > 0 a probabilistic algorithm (L, F ) can be constructed,
which with probability ≥ 1 − ε outputs an infinite binary sequence ω = ω1ω2 . . .
such that for every deterministic forecasting algorithm f , for some ν = 0 or
ν = 1,

lim sup
n→∞

∣∣∣∣∣
1
n

n∑
i=1

Iν(pi)(ωi − pi)

∣∣∣∣∣ ≥ 0.5,

where pi = f(ωi−1), i = 1, 2, . . ..

Theorem 1 uses randomized “selection rules” - Iν(pi), ν = 0, 1. In case of some
natural deterministic “selection rule”, we obtain the following theorem.

Let E(f(ωi−1) be the mean value of the forecasts produced by a randomized
forecasting system f given an input sequence ωi−1.

In the following theorem we use more strong definition of computability of ran-
domized forecasting systems - we consider randomized forecasting systems with
computable mathematical expectations: for any such system f its mathematical
expectation E(f(ωi−1) is a computable real function from ωn−1.

Theorem 3. For any ε > 0 a probabilistic algorithm (L, F ) can be constructed,
which with probability ≥ 1 − ε outputs an infinite binary sequence ω = ω1ω2 . . .
such that for every randomized forecasting system f with computable mathemat-
ical expectation, for some ν = 0 or ν = 1, the overall probability of the event

lim sup
n→∞

∣∣∣∣∣
1
n

n∑
i=1

Iν(E(pi))(ωi − pi)

∣∣∣∣∣ ≥ 0.5 (3)

equals one, where pi = f(ωi−1), i = 1, 2, . . ..

4 Proofs of Theorems 1-3

For any probabilistic algorithm (P, F ), we consider the function

Q(x) = P{ω : x � F (ω)}. (4)
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It is easy to verify that this function is lower semicomputable and satisfies:

Q(λ) ≤ 1;
Q(x0) + Q(x1) ≤ Q(x)

for all x. Any function satisfying these properties is called semicomputable
semimeasure. For any semicomputable semimeasure Q a probabilistic algorithm
(L, F ) exists such that (4) holds, where P = L (for the proof see [10,11]).

Though the semimeasure Q is not a measure, we consider the corresponding
measure on the set Ω

Q̄(Γx) = inf
n

∑
l(y)=n,x�y

Q(y).

This function can be extended on all Borel subsets A of Ω (see [11]).
We will construct a semicomputable semimeasure Q as a some sort of network

flow. We define an infinite network on the base of the infinite binary tree. Any
x ∈ Ξ defines two edges (x, x0) and (x, x1) of length one. In the construction
below we will mount to the network extra edges (x, y) of length > 1, where
x, y ∈ Ξ, x � y and y �= x0, x1. By the length of the edge (x, y) we mean the
number l(y) − l(x). For any edge σ = (x, y) we denote by σ1 = x its starting
vertex and by σ2 = y its terminal vertex. A computable function q(σ) defined
on all edges of length one and on all extra edges and taking rational values is
called a network if for all x ∈ Ξ

∑
σ:σ1=x

q(σ) ≤ 1.

Let G be the set of all extra edges of the network q (it is a part of the domain
of q). By q-flow we mean the minimal semimeasure P such that P ≥ R, where
the function R is defined by the following recursive equations

R(λ) = 1;

R(y) =
∑

σ:σ2=y

q(σ)R(σ1) (5)

for y �= λ. We can define the semimeasure P using R as follows. A set D is
prefix-free if x �� y for all x, y ∈ D, x �= y. Let πx be the set of all prefix-free
sets D such that x � y for all y ∈ D. Then it holds

P (x) = sup
D∈πx

∑
x:x∈D

R(x).

A network q is called elementary if the set of extra edges is finite and q(σ) = 1/2
for almost all edges of unit length. For any network q, we define the network
flow delay function (q-delay function)

d(x) = 1 − q(x, x0) − q(x, x1).
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The construction below works with all computable real functions φt(x), x ∈ Ξ,
t = 1, 2, . . .; any i = 〈t, s〉 is considered as a program for computing the rational
approximation φt,κs(ωn−1) of φt from below up to κs = 1/s.3 In the proof (see
Lemma 6) we use a special class of these functions, namely, functions of the type

φ(ωn−1) = Prn{f(ωn−1) ≥ 0.5} = 1 − ϕn(ωn−1), (6)

where ϕn(ωn−1) is a weak probability distribution function for some weakly
computable randomized forecasting system f . We have φ = φt for some t, and
by the construction below we visit any function φt on infinitely many steps n. To
do this, we define some function p(n) such that for any positive integer number
i we have p(n) = i for infinitely many n. For example, we can define p(〈i, s〉) = i
for all i and s.

For any program i = 〈t, s〉, any finite binary sequences x and y, any elementary
network q, and for any integer number n, let B(i, x, y, q, n) be true if the following
conditions hold

– (i) l(y) = n, x � y,
– (ii) d(yk) < 1 for all k, 1 ≤ k ≤ n, where d is the q-delay function and

yk = y1 . . . yk;
– (iii) for all k such that l(x) ≤ k < il(x) the values φt,κs(yk) are defined in

≤ n steps and

yk+1 =
{

0 if φt,κs(yk) ≥ 0.5
1 otherwise.

Let B(i, x, y, q, n) be false, otherwise. Define

β(x, q, n) = min{y : p(l(y)) = p(l(x)), B(p(l(x)), x, y, q, n)}

Here min is considered for lexicographical ordering of strings; we suppose that
min ∅ is undefined.

Lemma 1. For any total function φt, β(x, q, n) is defined for all x ∈ Ξ and for
all sufficiently large n.

Proof. The needed sequence y can be easily defined for all sufficiently large n
sequentially bit-by-bit, since φt,κs(z) is defined for all z. �
The goal of the construction below is the following. Any extra edge σ will be
assigned to some task number i such that p(l(σ1)) = p(l(σ2)) = i. The goal of the
task i is to define a finite set of extra edges σ such that for any infinite binary se-
quence ω one of the following conditions hold: either ω contains some extra edge
as a subword, or the network flow delay function d equals 1 on some initial frag-
ment of ω. For any extra edge σ mounted to the network q, B(i, σ1, σ2, q

n−1, n)
is true; it is false, otherwise. Lemma 5 shows that Q̄(EQ) > 1 − 1

2ε, where Q is

3 Recall that t = 〈j, k〉 for some j, k; we use the lower and upper semicomputable real
functions φ−(j, x) and φ+(k, x) universal for all lower semicomputable and upper
semicomputable functions from x ∈ Ξ to compute values φt(x).
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the q-flow and EQ is defined by (7) below. Lemma 6 shows that for each ω ∈ EQ

the event (2) holds with the overall probability one.

Construction. Let ρ(n) = (n+n0)2 for some sufficiently large n0 (the value n0

will be specified below in the proof of Lemma 5).
Using the mathematical induction by n, we define a sequence qn of elementary

networks. Put q0(σ) = 1/2 for all edges σ of length one.
Let n > 0 and a network qn−1 is defined. Let dn−1 be the qn−1-delay function

and let Gn−1 be the set of all extra edges. We suppose also that l(σ2) < n for
all σ ∈ Gn−1.

Let us define a network qn. At first, we define a network flow delay function
dn and a set Gn. The construction can be split up into two cases.

Let w(i, qn−1) be equal to the minimal m such that p(m) = i and m >
(i + 1)l(σ2) for each extra edge σ ∈ Gn−1 such that p(l(σ1))) < i.

The inequality w(i, qm) �= w(i, qm−1) can be induced by some task j < i that
mounts an extra edge σ = (x, y) such that l(y) > w(i, qm−1) and p(l(x)) =
p(l(y)) = j. Lemma 2 (below) will show that this can happen only at finitely
many steps of the construction.

Case 1. w(p(n), qn−1) = n (the goal of this part is to start a new task i = p(n)
or to restart the existing task i = p(n) if it was destroyed by some task j < i at
some preceding step).

Put dn(y) = 1/ρ(n) for l(y) = n and define dn(y) = dn−1(y) for all other y.
Put also Gn = Gn−1.

Case 2. w(p(n), qn−1) < n (the goal of this part is to process the task i = p(n)).
Let Cn be the set of all x such that w(i, qn−1) ≤ l(x) < n, 0 < dn−1(x) < 1,

the function β(x, qn−1, n) is defined4 and there is no extra edge σ ∈ Gn−1 such
that σ1 = x.

In this case for each x ∈ Cn define dn(β(x, qn−1, n)) = 0, and for all other y
of length n such that x � y define

dn(y) =
dn−1(x)

1 − dn−1(x)
.

Define dn(y) = dn−1(y) for all other y. We add an extra edge to Gn−1, namely,
define

Gn = Gn−1 ∪ {(x, β(x, qn−1, n)) : x ∈ Cn}.

We say that the task i = p(n) mounts the extra edge (x, β(x, qn−1, n)) to the
network and that all existing tasks j > i are destroyed by the task i.

After Case 1 and Case 2, define for any edge σ of unit length

qn(σ) =
1
2
(1 − dn(σ1))

and qn(σ) = dn(σ1) for each extra edge σ ∈ Gn.
4 In particular, p(l(x)) = i and l(β(x, qn−1, n)) = n.
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Case 3. Cases 1 and 2 do not hold.
Define dn = dn−1, qn = qn−1, Gn = Gn−1.
As the result of the construction we define the network q = lim

n→∞ qn, the
network flow delay function d = lim

n→∞ dn and the set of extra edges G = ∪nGn.
The functions q and d are computable and the set G is recursive by their

definitions. Let Q denotes the q-flow.
The following lemma shows that any task can mount new extra edges only

at finite number of steps. Let G(i) be the set of all extra edges mounted by the
task i, w(i, q) = limn→∞ w(i, qn).

Lemma 2. The set G(i) is finite, w(i, q) exists and w(i, q) < ∞ for all i.

Proof. Note that if G(j) is finite for all j < i, then w(i, q) < ∞. Hence, we must
prove that the set G(i) is finite for any i. Suppose that the opposite assertion
holds. Let i be the minimal such that G(i) is infinite. By choice of i the sets
G(j) for all j < i are finite. Then w(i, q) < ∞.

For any x such that l(x) ≥ w(i, q), consider the maximal m such that for
some initial fragment xm � x there exists an extra edge σ = (xm, y) ∈ G(i). If
no such extra edge exists define m = w(i, q). By definition, if d(xm) �= 0 then
1/d(xm) is an integer number. Define

u(x) =

⎧
⎨
⎩

1/d(xm) if d(xm) �= 0, l(x) ≥ w(i, q)
ρ(w(i, q)) if l(x) < w(i, q)
0 otherwise

By construction the integer valued function u(x) has the property: u(x) ≥ u(y)
if x � y. Besides, if u(x) > u(y) then u(x) > u(z) for all z such that x � z and
l(z) = l(y). Then the function

û(ω) = min{n : u(ωi) = u(ωn) for all i ≥ n}

is defined for all ω ∈ Ω. It is easy to see that this function is continuous. Since
Ω is compact space in the topology generated by intervals Γx, this function
is bounded by some number m. Then u(x) = u(xm) for all l(x) ≥ m. By the
construction, if any extra edge of ith type was mounted to G(i) at some step then
u(y) < u(x) holds for some new pair (x, y) such that x � y. This is contradiction
with the existence of the number m. �
An infinite sequence α ∈ Ω is called an i-extension of a finite sequence x if x � α
and B(i, x, αn, n) is true for almost all n.

A sequence α ∈ Ω is called i-closed if d(αn) = 1 for some n such that p(n) = i,
where d is the q-delay function. Note that if σ ∈ G(i) is some extra edge then
B(i, σ1, σ2, n) is true, where n = l(σ2).

Lemma 3. Let for any initial fragment ωn of an infinite sequence ω some i-
extension exists. Then either the sequence ω will be i-closed in the process of
the construction or ω contains an extra edge of ith type (i.e. σ2 � ω for some
σ ∈ G(i)).
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Proof. Let a sequence ω is not i-closed. By Lemma 2 the maximal m exists such
that p(m) = i and d(ωm) > 0. Since the sequence ωm has an i-extension and
d(ωk) < 1 for all k, by Case 2 of the construction a new extra edge (ωm, y) of
ith type must be mounted to the binary tree. By the construction d(y) = 0 and
d(z) �= 0 for all z such that ωm � z, l(z) = l(y), and z �= y. By the choice of m
we have y � ω. �
Lemma 4. It holds Q(y) = 0 if and only if q(σ) = 0 for some edge σ of unit
length located on y (this edge satisfies σ2 � y).

Proof. The necessary condition is obvious. To prove that this condition is suffi-
cient, let us suppose that q(yn, yn+1) = 0 for some n < l(y) but Q(y) �= 0. Then
by definition d(yn) = 1. Since Q(y) �= 0 an extra edge (x, z) ∈ G exists such
that x � yn and yn+1 � z. But, by the construction, this extra edge can not be
mounted to the network ql(z)−1 since d(zn) = 1. This contradiction proves the
lemma. �
For any semimeasure P define

EP = {ω ∈ Ω : ∀n(P (ωn) �= 0)}
the support set of P . It is easy to see that EP is a closed subset of Ω and
P̄ (EP ) = P̄ (Ω). By Lemma 4, the relation Q(y) = 0 is recursive and

EQ = Ω \ ∪d(x)=1Γx. (7)

Lemma 5. It holds Q̄(EQ) > 1 − 1
2ε.

Proof. We bound Q̄(Ω) from below. Let R be defined by (5). By definition of
the network flow delay function, we have

∑
u:l(u)=n+1

R(u) =
∑

u:l(u)=n

(1 − d(u))R(u) +
∑

σ:σ∈G,l(σ2)=n+1

q(σ)R(σ1). (8)

Define an auxiliary sequence

Sn =
∑

u:l(u)=n

R(u) −
∑

σ:σ∈G,l(σ2)=n

q(σ)R(σ1).

At first, we consider the case w(p(n), qn−1) < n. If there is no edge σ ∈ G such
that l(σ2) = n then Sn+1 ≥ Sn. Suppose that some such edge exists. Define

P (u, σ) ⇐⇒ l(u) = l(σ2)&σ1 � u&u �= σ2&σ ∈ G.

By definition of the network flow delay function, we have
∑

u:l(u)=n

d(u)R(u) =
∑

σ:σ∈G,l(σ2)=n

d(σ2)
∑

u:P (u,σ)

R(u) =

=
∑

σ:σ∈G,l(σ2)=n

d(σ1)
1 − d(σ1)

∑
u:P (u,σ)

R(u) ≤
∑

σ:σ∈G,l(σ2)=n

d(σ1)R(σ1) =

=
∑

σ:σ∈G,l(σ2)=n

q(σ)R(σ1). (9)
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Here we used the inequality
∑

u:P (u,σ)

R(u) ≤ R(σ1) − d(σ1)R(σ1)

for all σ ∈ G such that l(σ2) = n. Combining this bound with (8) we obtain
Sn+1 ≥ Sn.

Let us consider the case w(p(n), qn−1) = n. Then

∑
u:l(u)=n

d(u)R(u) ≤ ρ(n) =
1

(n + n0)2
.

Combining (8) and (9) we obtain

Sn+1 ≥ Sn − 1
(n + n0)2

for all n. Since S0 = 1, this implies

Sn ≥ 1 −
∞∑

i=1

1
(i + n0)2

≥ 1 − 1
2
ε

for some sufficiently large constant n0. Since Q ≥ R, it holds

Q̄(Ω) = inf
n

∑
l(u)=n

Q(u) ≥ inf
n

Sn ≥ 1 − 1
2
ε.

Lemma is proved. �

Lemma 6. For each weakly computable randomized forecasting system f and
and for each sequence ω ∈ EQ, the event (2) holds with the overall probability
one.

Proof. Let ω be an infinite sequence and let f be a weakly computable ran-
domized forecasting system, i.e., the corresponding φt(ωn−1) (defined by (6)) is
defined for all n. Let i = 〈t, s〉 be a program for computing the rational approx-
imation φt,κs from below up to κs = 1/s. Since in the construction we visit φt

on infinitely many steps n such that p(n) = i = 〈t, s〉, where s = 1, 2, . . ., in the
proof we will consider only sufficiently large i.

By definition d(ωn) < 1 for all n if ω ∈ EQ. Since ω is an i-extension of ωn

for each n, by Lemma 3 there exists an extra edge σ ∈ G(i) such that σ2 � ω.
In the following, let k = l(σ1) and n = ik.

Denote p−j = max{pj,s : pj,s < 0.5} and p+
j = min{pj,s : pj,s ≥ 0.5}, where

{pj,1, . . . , pj,mj } is the range of the random variable f(ωj−1).5 By definition of
precision of rounding p+

j − p−j ≥ δ for all j.

5 For technical reason, if necessary we add 0 and 1 to values of f(ωn−1) and set their
probabilities be 0.
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Denote pj = f(ωj−1), j = 1, 2, . . .. By definition pj is a random variable. In
the following we use the inequality

φt,κs(ω
j−1) ≤ Pr{pj ≥ 0.5} ≤ φt,κs(ω

j−1) + κs.

Consider two random variables

ϑn,1 =
n∑

j=k+1

ξ(pj ≥ 0.5)(ωj − pj), (10)

ϑn,2 =
n∑

j=k+1

ξ(pj < 0.5)(ωj − pj), (11)

where ξ(true) = 1, and ξ(false) = 0.
We compute the bounds of mathematical expectations of these variables.

These expectations are taken with respect to the overall probability distribu-
tion Pr generated by probability distributions Prj of random variables pj ,
j = 1, 2, . . . (ω is fixed). Using the definition of the subword σ ∈ G(i) of the
sequence ω, we obtain (k < j ≤ n)

E(ϑn,1) ≤
∑
ωj=0

Pr{pj ≥ 0.5}(−p+
j ) +

∑
ωj=1

Pr{pj ≥ 0.5}(1 − p+
j ) ≤ (12)

−0.5
n∑

j=k+1

ξ(ωj = 0)p+
j + (0.5 + κs)

n∑
j=k+1

ξ(ωj = 1)(1 − p+
j ).

E(ϑn,2) ≥
∑
ωj=0

Pr{pj < 0.5}(−p−j ) +
∑
ωj=1

Pr{pj < 0.5}(1 − p−j ) ≥ (13)

−0.5
n∑

j=k+1

ξ(ωj = 0)p−j + (0.5 − κs)
n∑

j=k+1

ξ(ωj = 1)(1 − p−j ).

Subtracting (12) from (13) we obtain

E(ϑn,2) − E(ϑn,1) ≥ 0.5
n∑

j=k+1

ξ(ωj = 0)(p+
j − p−j ) +

0.5
n∑

j=k+1

ξ(ωj = 1)(p+
j − p−j ) − κs

n∑
j=k+1

ξ(ωj = 1)(2 − p−j − p+
j ) ≥

≥ 0.5δ(n − k) − 2κs(n − k) = (0.5δ − 2κs)(n − k). (14)

Then
E(ϑn,1) ≤ (−0.25δ − κs)(n − k)

or
E(ϑn,2) ≥ (0.25δ − κs)(n − k)
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for infinitely many n, k. Since for any fixed ft the ratio k/n = i−1 and the
number κs = 1/s become arbitrary small for large i such that i = 〈t, s〉 for some
s, we have

lim inf
n→∞

1
n

E(ϑn,1) ≤ −0.25δ

or
lim sup

n→∞
1
n

E(ϑn,2) ≥ 0.25δ.

The martingale strong law of large numbers: for ν = 1, 2, with Pr-probability
one

1
n

n∑
j=1

Iν(pj)(ωj − pj) − 1
n

E(ϑn,ν) → 0

as n → ∞, implies that for ν = 0 or for ν = 1 the overall probability of the
event (2) equals one. Lemma 6 and Theorem 1 are proved. �
Note, that inequalities (14) show that condition (2) of Theorem 1 can be replaced
on

lim sup
n→∞

∣∣∣∣∣∣
1
n

n∑
j=1

Iν(pj)(ωj − pj)

∣∣∣∣∣∣
≥ 0.25δ − κ

if in the construction of our algorithm the function (6) is computed up to a fixed
precision κ.

The proof of Theorem 2 is in the line of the proof of Theorem 1, where φ(ωn−1)
denote a deterministic forecasting system. We have in the proof of Lemma 6, for
some ν = 0 or ν = 1,

n∑
j=k+1

Iν(pj)(ωi − pj) ≥ (0.5 − 2κs)(n − k) (15)

for infinitely many k, n = ik, where pj = fi(ωj−1), j = 1, 2, . . ..
To prove (3) of Theorem 3 we define in (6) φ(ωj−1) = E(f(ωj−1)) - the

mathematical expectation of a random variable f(ωj−1). Then in the proof of
Lemma 6, for some ν = 0 or ν = 1, the inequality (15), where pj is replaced on
E(f(ωj−1)), holds for infinitely many n. By the martingale strong law of large
numbers we obtain that for ν = 0 and for ν = 1 with the overall probability one

1
n

n∑
j=1

Iν(E(pj))(pj − E(pj)) → 0 (16)

as n → ∞. Combining (16) with (15) modified as above, we obtain (3).
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